Problem 1: Gears

Consider a hoist drive shown in the figure. The motor is coupled to the rope drum through a gear mechanism, whose gear ratio is $i = \omega_{\rm M}/\omega_{\rm L} = 9.6$. The load mass is m = 500 kg, the motor inertia is $J_{\rm M} = 0.5$ kgm², and the rope drum inertia is $J_{\rm L} = 48.5$ kgm². The radius of the rope drum is r = 0.25 m. The rope mass, gear inertias, and the mechanical losses are omitted. Calculate the equivalent total inertia at the motor side and the equivalent load torque at the motor side.

Problem 2: Electromagnetic torque vs. shaft torque

A torque sensor is connected between the motor shaft and the load shaft. The load torque is constant $T_{\rm L} = 150$ Nm and the load inertia is $J_{\rm L} = 1.0$ kgm². The motor inertia is $J_{\rm M} = 0.6$ kgm². The speed is increased from zero to $\omega_{\rm M} = 100$ rad/s in 0.5 s with a constant angular acceleration.

- (a) What is the electromagnetic torque during acceleration? What about the measured torque?
- (b) What is the electromagnetic torque at constant speed? What about the measured torque?

Problem 3: Torque and power

In periodic duty, the mechanical angular speed $\omega_{\rm M}$ and load torque $T_{\rm L}$ vary as shown in the figure. The total equivalent inertia is 0.04 kgm². The cycle duration is $t_{\rm c} = 8$ s.

- (a) Draw the conceptual waveforms of the electromagnetic torque $T_{\rm M}$ and mechanical power $p_{\rm M}$ for one cycle.
- (b) Calculate the rms value of the electromagnetic torque.
- (c) A permanent-magnet DC motor is applied in this periodic duty. The rated torque and rated armature current of the motor are $T_{\rm N} = 14.3$ Nm and $I_{\rm N} = 33$ A, respectively. What is the maximum armature current during the period?

