## Problem 1: Transfer functions of a DC motor

The block diagram of a DC motor is shown in the figure.
(a) Derive the transfer functions

$$
G_{\omega u}(s)=\frac{\omega_{\mathrm{M}}(s)}{u_{\mathrm{a}}(s)} \quad \text { and } \quad G_{\omega T}(s)=\frac{\omega_{\mathrm{M}}(s)}{T_{\mathrm{L}}(s)}
$$

(b) Replace the electric dynamics of the machine with the DC gain and formulate the transfer functions $G_{\omega u}(s)$ and $G_{\omega T}(s)$.


## Solution

(a) Consider a closed-loop system shown in the figure.


The following equations hold for the closed-loop transfer functions:

$$
\begin{align*}
\frac{y(s)}{r(s)} & =\frac{G_{1}(s) G_{2}(s)}{1+G_{1}(s) G_{2}(s) H(s)}  \tag{1}\\
\frac{y(s)}{d(s)} & =\frac{G_{2}(s)}{1+G_{1}(s) G_{2}(s) H(s)} \tag{2}
\end{align*}
$$

It is relatively easy to derive these equations if one has forgotten them. Using (1), the block diagram given in the problem is first transformed to the following form:


Using (1), we can write the transfer function from the voltage to the speed as

$$
G_{\omega u}(s)=\frac{\omega_{\mathrm{M}}(s)}{u_{\mathrm{a}}(s)}=\frac{\frac{1}{s L_{\mathrm{a}}+R_{\mathrm{a}}} k_{\mathrm{f}} \frac{1}{s J}}{1+\frac{1}{s L_{\mathrm{a}}+R_{\mathrm{a}}} k_{\mathrm{f}} \frac{1}{s J} k_{\mathrm{f}}}=\frac{\frac{k_{\mathrm{f}}}{J L_{\mathrm{a}}}}{s^{2}+s \frac{R_{\mathrm{a}}}{L_{\mathrm{a}}}+\frac{k_{\mathrm{f}}^{2}}{J L_{\mathrm{a}}}}
$$

Using (2), the transfer function from the load torque to the speed becomes

$$
G_{\omega T}(s)=\frac{\omega_{\mathrm{M}}(s)}{T_{\mathrm{L}}(s)}=-\frac{\frac{1}{s J}}{1+\frac{1}{s L_{\mathrm{a}}+R_{\mathrm{a}}} k_{\mathrm{f}} \frac{1}{s J} k_{\mathrm{f}}}=-\frac{\frac{1}{J}\left(s+\frac{R_{\mathrm{a}}}{L_{\mathrm{a}}}\right)}{s^{2}+s \frac{R_{\mathrm{a}}}{L_{\mathrm{a}}}+\frac{k_{\mathrm{f}}^{2}}{J L_{\mathrm{a}}}}
$$

(b) The electric dynamics of the machine

$$
Y_{\mathrm{a}}(s)=\frac{1}{s L_{\mathrm{a}}+R_{\mathrm{a}}}
$$

is replaced with the DC gain by substituting $s=0$. The corresponding block is shown in the following figure:


The transfer functions can be derived from this block diagram in a fashion similar to Part (a) of the problem. The same result is obtained by multiplying the numerator and denominator of the derived transfer functions by $L_{\mathrm{a}}$ and then substituting $L_{\mathrm{a}}=0$ :

$$
\begin{gathered}
G_{\omega u}(s)=\frac{\omega_{\mathrm{M}}(s)}{u_{\mathrm{a}}(s)}=\frac{\frac{k_{\mathrm{f}}}{J R_{\mathrm{a}}}}{s+\frac{k_{f}^{2}}{J R_{\mathrm{a}}}} \\
G_{\omega T}(s)=\frac{\omega_{\mathrm{M}}(s)}{T_{\mathrm{L}}(s)}=-\frac{1 / J}{s+\frac{k_{f}^{2}}{J R_{\mathrm{a}}}}
\end{gathered}
$$

The time constant of the first-order system is

$$
\tau=\frac{J R_{\mathrm{a}}}{k_{\mathrm{f}}^{2}}
$$

which depends strongly on the flux factor $k_{\mathrm{f}}$ of the motor (and increases when the flux factor is decreased).

## Problem 2: Current ripple

The parameters of a DC motor are: $R_{\mathrm{a}}=1 \Omega, L_{\mathrm{a}}=10 \mathrm{mH}$, and $k_{\mathrm{f}}=4 \mathrm{Vs}$. The average steady-state current taken by the motor is $I_{\mathrm{a}}=100 \mathrm{~A}$ and the rotor speed is $560 \mathrm{r} / \mathrm{min}$. The motor is supplied from a four-quadrant DC-DC converter, where the unipolar PWM is applied. The DC-bus voltage is $U_{\mathrm{dc}}=450 \mathrm{~V}$ and the switching (carrier) frequency is $f_{\mathrm{sw}}=4 \mathrm{kHz}$. Calculate the peak-to-peak current ripple.


## Solution

The electrical dynamics of the DC motor are governed by

$$
\begin{equation*}
L_{\mathrm{a}} \frac{\mathrm{~d} i_{\mathrm{a}}(t)}{\mathrm{d} t}=u_{\mathrm{a}}(t)-R_{\mathrm{a}} i_{\mathrm{a}}(t)-e_{\mathrm{a}}(t) \tag{3}
\end{equation*}
$$

The rotor angular speed is

$$
\omega_{\mathrm{M}}=2 \pi \cdot \frac{560 \mathrm{r} / \mathrm{min}}{60 \mathrm{~s} / \mathrm{min}}=58.6 \mathrm{rad} / \mathrm{s}
$$

and the back-emf is $E_{\mathrm{a}}=k_{\mathrm{f}} \omega_{\mathrm{M}}=4 \mathrm{Vs} \cdot 58.6 \mathrm{rad} / \mathrm{s}=234.6 \mathrm{~V}$. Based on (3), the average armature voltage is

$$
U_{\mathrm{a}}=R_{\mathrm{a}} I_{\mathrm{a}}+E_{\mathrm{a}}=1 \Omega \cdot 100 \mathrm{~A}+234.6 \mathrm{~V}=334.6 \mathrm{~V}
$$

in steady state.
The figure below illustrates the waveforms of the armature voltage $u_{\mathrm{a}}$ and the armature current $i_{\mathrm{a}}$. The average voltage during the switching period $T_{\mathrm{sw}}$ is

$$
\begin{equation*}
\bar{u}_{\mathrm{a}}=\frac{1}{T_{\mathrm{sw}}} \int_{0}^{T_{\mathrm{sw}}} u_{\mathrm{a}}(t) \mathrm{d} t=\frac{2 \Delta t}{T_{\mathrm{sw}}} U_{\mathrm{dc}} \tag{4}
\end{equation*}
$$

where $\Delta t$ is the duration of the positive voltage pulse (see the figure). The duration is

$$
\Delta t=\frac{U_{\mathrm{a}}}{U_{\mathrm{dc}}} \frac{T_{\mathrm{sw}}}{2}=\frac{U_{\mathrm{a}}}{U_{\mathrm{dc}}} \frac{1}{2 f_{\mathrm{sw}}}
$$

since $U_{\mathrm{a}}=\bar{u}_{\mathrm{a}}$ in steady state.


In the time scale of switching periods, the dynamics in (3) can be approximated as

$$
\begin{equation*}
L_{\mathrm{a}} \frac{\mathrm{~d} i_{\mathrm{a}}(t)}{\mathrm{d} t}=u_{\mathrm{a}}(t)-R_{\mathrm{a}} I_{\mathrm{a}}-E_{\mathrm{a}}=u_{\mathrm{a}}(t)-U_{\mathrm{a}} \tag{5}
\end{equation*}
$$

The change $\Delta i_{\mathrm{a}}$ in the current during the positive voltage pulse $u_{\mathrm{a}}(t)=U_{\mathrm{dc}}$ is

$$
\begin{aligned}
\Delta i_{\mathrm{a}} & =\frac{U_{\mathrm{dc}}-U_{\mathrm{a}}}{L_{\mathrm{a}}} \Delta t \\
& =\frac{U_{\mathrm{dc}}-U_{\mathrm{a}}}{L_{\mathrm{a}}} \frac{U_{\mathrm{a}}}{U_{\mathrm{c}}} \frac{1}{2 f_{\mathrm{sw}}} \\
& =\frac{450 \mathrm{~V}-334.6 \mathrm{~V}}{10 \mathrm{mH}} \cdot \frac{334.6 \mathrm{~V}}{450 \mathrm{~V}} \frac{1}{2 \cdot 4 \mathrm{kHz}}=1.1 \mathrm{~A}
\end{aligned}
$$

This peak-to-peak current ripple is roughly $1 \%$ of the average current.
Remark 1: Naturally, the same result would be obtained, if the zero-voltage condition $u_{\mathrm{a}}(t)=0$ were used:

$$
\Delta i_{\mathrm{a}}=\frac{U_{\mathrm{a}}}{L_{\mathrm{a}}}\left(\frac{T_{\mathrm{sw}}}{2}-\Delta t\right)
$$

Remark 2: The switching period is $T_{\mathrm{sw}}=1 / f_{\mathrm{sw}}=1 /(4 \mathrm{kHz})=250 \mu \mathrm{~s}$ and the electrical time constant of the armature winding is $\tau_{\mathrm{a}}=L_{\mathrm{a}} / R_{\mathrm{a}}=10 \mathrm{~ms}$. Since $\tau_{\mathrm{a}}$ is much longer (40 times) than $T_{\mathrm{sw}}$, the approximation (5) holds well.

