Problem 1: Space-vector components from line-to-line voltages

Line-to-line voltages u_{ab} and u_{bc} are known. Calculate u_{α} and u_{β}.

Problem 2: Inverse transformation

The inverse space-vector transformations are

$$
u_{\mathrm{a}}=\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}}\right\} \quad u_{\mathrm{b}}=\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 2 \pi / 3}\right\} \quad u_{\mathrm{c}}=\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 4 \pi / 3}\right\}
$$

Let us consider the phase b as an example here. Show that the above expression for the phase voltage u_{b} holds.

Problem 3: Field weakening

Consider a three-phase four-pole permanent-magnet synchronous motor. The stator inductance is $L_{\mathrm{s}}=0.035 \mathrm{H}$ and the stator resistance can be assumed to be zero. The permanent magnets induce the rated voltage of 400 V at the rotational speed of 1500 $\mathrm{r} / \mathrm{min}$. The rated current is 7.3 A.
(a) The control principle $i_{\mathrm{d}}=0$ is used. The motor is operated at the rated voltage and current. Calculate the rotational speed, torque, and mechanical power.
(b) The motor is driven in the field-weakening region at the rated voltage and current. The speed is increased until the absolute values of i_{d} and i_{q} are equal. Calculate the rotational speed, torque, and mechanical power.
Draw also the vector diagrams.

