Problem 1: Space-vector components from line-to-line voltages

Line-to-line voltages u_{ab} and u_{bc} are known. Calculate u_{α} and u_{β}.

Solution

The voltage space vector is

$$
\underline{u}_{\mathrm{s}}^{\mathrm{s}}=\frac{2}{3}\left(u_{\mathrm{a}}+u_{\mathrm{b}} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right)=u_{\alpha}+\mathrm{j} u_{\beta}
$$

where $u_{\mathrm{a}}, u_{\mathrm{b}}$, and u_{c} are the phase voltages Since the zero-sequence component does not affect the space vector, we can freely add an arbitrary voltage u_{0} to each phase voltage without affecting the space vector. Let us denote the modified voltages as $u_{\mathrm{a}}^{\prime}=u_{\mathrm{a}}+u_{0}, u_{\mathrm{b}}^{\prime}=u_{\mathrm{b}}+u_{0}$, and $u_{\mathrm{c}}^{\prime}=u_{\mathrm{c}}+u_{0}$. We can select $u_{0}=-u_{\mathrm{b}}$ and then apply the space-vector transformation:

$$
\begin{aligned}
\underline{u}_{\mathrm{s}}^{\mathrm{s}} & =\frac{2}{3}\left(u_{\mathrm{a}}^{\prime}+u_{\mathrm{b}}^{\prime} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}}^{\prime} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right) \\
& =\frac{2}{3}\left[\left(u_{\mathrm{a}}-u_{\mathrm{b}}\right)+\left(u_{\mathrm{b}}-u_{\mathrm{b}}\right) \mathrm{e}^{\mathrm{j} 2 \pi / 3}+\left(u_{\mathrm{c}}-u_{\mathrm{b}}\right) \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right] \\
& =\frac{2}{3}\left(u_{\mathrm{ab}}-u_{\mathrm{bc}} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right) \\
& =\frac{2}{3} u_{\mathrm{ab}}+\frac{1}{3} u_{\mathrm{bc}}+\mathrm{j} \frac{1}{\sqrt{3}} u_{\mathrm{bc}}
\end{aligned}
$$

Hence, the components are $u_{\alpha}=\left(2 u_{\mathrm{ab}}+u_{\mathrm{bc}}\right) / 3$ and $u_{\beta}=u_{\mathrm{bc}} / \sqrt{3}$.

Problem 2: Inverse transformation

The inverse space-vector transformations are

$$
u_{\mathrm{a}}=\operatorname{Re}\left\{\underline{\mathrm{s}}_{\mathrm{s}}^{\mathrm{s}}\right\} \quad u_{\mathrm{b}}=\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 2 \pi / 3}\right\} \quad u_{\mathrm{c}}=\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 4 \pi / 3}\right\}
$$

Let us consider the phase b as an example here. Show that the above expression for the phase voltage u_{b} holds.

Solution

The space vector is

$$
u_{\mathrm{s}}^{\mathrm{s}}=\frac{2}{3}\left(u_{\mathrm{a}}+u_{\mathrm{b}} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right)
$$

Multiplying both sides by $\mathrm{e}^{-\mathrm{j} 2 \pi / 3}$ gives

$$
\begin{aligned}
u_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 2 \pi / 3} & =\frac{2}{3}\left(u_{\mathrm{b}}+u_{\mathrm{a}} \mathrm{e}^{-\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}} \mathrm{e}^{\mathrm{j} 2 \pi / 3}\right) \\
& =\frac{2}{3}\left\{u_{\mathrm{b}}+u_{\mathrm{a}}\left[\cos \left(-\frac{2 \pi}{3}\right)+\mathrm{j} \sin \left(-\frac{2 \pi}{3}\right)\right]+u_{\mathrm{c}}\left[\cos \left(\frac{2 \pi}{3}\right)+\mathrm{j} \sin \left(\frac{2 \pi}{3}\right)\right]\right\}
\end{aligned}
$$

Taking the real part gives

$$
\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 2 \pi / 3}\right\}=\frac{2}{3}\left[u_{\mathrm{b}}+u_{\mathrm{a}} \cos \left(\frac{2 \pi}{3}\right)+u_{\mathrm{c}} \cos \left(\frac{2 \pi}{3}\right)\right]=\frac{2}{3}\left[u_{\mathrm{b}}-\frac{1}{2}\left(u_{\mathrm{a}}+u_{\mathrm{c}}\right)\right]
$$

since $\cos (2 \pi / 3)=-1 / 2$. Since the space vector does not include the zero-sequence component, we can use $u_{\mathrm{a}}+u_{\mathrm{b}}+u_{\mathrm{c}}=0$, giving $u_{\mathrm{a}}+u_{\mathrm{c}}=-u_{\mathrm{b}}$. Hence, the inverse transformation is

$$
u_{\mathrm{b}}=\operatorname{Re}\left\{\underline{u}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} 2 \pi / 3}\right\}
$$

Remark: The projection of the vector on the direction of the phase b (having the angle of $2 \pi / 3$) is illustrated in the figure below. It is worth noticing that the voltage u_{b} is negative in the figure.

Problem 3: Field weakening

Consider a three-phase four-pole permanent-magnet synchronous motor. The stator inductance is $L_{\mathrm{s}}=0.035 \mathrm{H}$ and the stator resistance can be assumed to be zero. The permanent magnets induce the rated voltage of 400 V at the rotational speed of 1500 $\mathrm{r} / \mathrm{min}$. The rated current is 7.3 A .
(a) The control principle $i_{\mathrm{d}}=0$ is used. The motor is operated at the rated voltage and current. Calculate the rotational speed, torque, and mechanical power.
(b) The motor is driven in the field-weakening region at the rated voltage and current. The speed is increased until the absolute values of i_{d} and i_{q} are equal. Calculate the rotational speed, torque, and mechanical power.
Draw also the vector diagrams.

Solution

The peak-valued quantities will be used. The rated current is $i_{\mathrm{N}}=\sqrt{2} \cdot 7.3 \mathrm{~A}=10.3 \mathrm{~A}$ and the rated line-to-neutral voltage is $u_{\mathrm{N}}=\sqrt{2 / 3} \cdot 400 \mathrm{~V}=326.6 \mathrm{~V}$. It is known that the induced voltage is $\left|\underline{e}_{\mathrm{s}}\right|=u_{\mathrm{N}}$ at the electrical angular speed

$$
\omega_{\mathrm{m}}=2 \pi p n=2 \pi \cdot 2 \cdot \frac{1500 \mathrm{r} / \mathrm{min}}{60 \mathrm{~s} / \mathrm{min}}=2 \pi \cdot 50 \mathrm{rad} / \mathrm{s}
$$

Hence, the permanent-magnet flux linkage can be solved as

$$
\psi_{\mathrm{f}}=\frac{\left|\underline{e}_{\mathrm{s}}\right|}{\omega_{\mathrm{m}}}=\frac{326.6 \mathrm{~V}}{2 \pi \cdot 50 \mathrm{rad} / \mathrm{s}}=1.040 \mathrm{Vs}
$$

(a) Since $i_{\mathrm{d}}=0$ and $i_{\mathrm{q}}=i_{\mathrm{N}}$, the current vector is

$$
\underline{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}=\mathrm{j} i_{\mathrm{N}}=\mathrm{j} 10.3 \mathrm{~A}
$$

The stator flux linkage is

$$
\underline{\psi}_{\mathrm{s}}=L_{\mathrm{s}} \underline{i}_{\mathrm{s}}+\psi_{\mathrm{f}}=0.035 \mathrm{H} \cdot \mathrm{j} 10.3 \mathrm{~A}+1.040 \mathrm{Vs}=1.040+\mathrm{j} 0.361 \mathrm{Vs}
$$

and its magnitude is

$$
\left|\underline{\psi}_{\mathrm{s}}\right|=\sqrt{\psi_{\mathrm{d}}^{2}+\psi_{\mathrm{q}}^{2}}=\sqrt{1.040^{2}+0.361^{2}} \mathrm{Vs}=1.10 \mathrm{Vs}
$$

Omitting the stator resistance, the steady-state voltage equation is

$$
\underline{u}_{\mathrm{s}}=\mathrm{j} \omega_{\mathrm{m}} \underline{\psi}_{\mathrm{s}}
$$

Hence, the electrical angular speed of the rotor becomes

$$
\omega_{\mathrm{m}}=\frac{\left|\underline{u}_{\mathrm{s}}\right|}{\left|\underline{\psi}_{\mathrm{s}}\right|}=\frac{326.6 \mathrm{~V}}{1.10 \mathrm{Vs}}=296.9 \mathrm{rad} / \mathrm{s}
$$

and the corresponding rotational speed is

$$
n=\frac{\omega_{\mathrm{m}}}{2 \pi p}=\frac{296.9 \mathrm{rad} / \mathrm{s}}{2 \pi \cdot 2} \cdot 60 \mathrm{~s} / \mathrm{min}=1418 \mathrm{r} / \mathrm{min}
$$

The torque is

$$
T_{\mathrm{M}}=\frac{3 p}{2} \psi_{\mathrm{f}} i_{\mathrm{q}}=\frac{3 \cdot 2}{2} \cdot 1.040 \mathrm{Vs} \cdot 10.3 \mathrm{~A}=32.1 \mathrm{Nm}
$$

and the mechanical power is

$$
P_{\mathrm{M}}=T_{\mathrm{M}} \omega_{\mathrm{M}}=T_{\mathrm{M}} \frac{\omega_{\mathrm{m}}}{p}=32.1 \mathrm{Nm} \cdot \frac{296.9 \mathrm{rad} / \mathrm{s}}{2}=4.77 \mathrm{~kW}
$$

The vector diagram is shown at the end of the solution.
(b) Now $\left|i_{\mathrm{d}}\right|=\left|i_{\mathrm{q}}\right|$ and $\left|i_{\mathrm{s}}\right|=\sqrt{i_{\mathrm{d}}^{2}+i_{\mathrm{q}}^{2}}=i_{\mathrm{N}}$. Hence, the absolute values of the current components are

$$
\left|i_{\mathrm{d}}\right|=\left|i_{\mathrm{q}}\right|=i_{\mathrm{N}} / \sqrt{2}=7.3 \mathrm{~A}
$$

The component i_{d} is negative in the field-weakening region and the component i_{q} is positive at positive torque:

$$
\underline{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}=-7.3+\mathrm{j} 7.3 \mathrm{~A}
$$

The stator flux linkage is

$$
\begin{aligned}
\underline{\psi}_{\mathrm{s}} & =L_{\mathrm{s}} \underline{i}_{\mathrm{s}}+\psi_{\mathrm{f}} \\
& =0.035 \mathrm{H} \cdot(-7.3+\mathrm{j} 7.3) \mathrm{A}+1.040 \mathrm{Vs}=0.785+\mathrm{j} 0.256 \mathrm{Vs}
\end{aligned}
$$

and its magnitude is

$$
\left|\underline{\psi}_{\mathrm{s}}\right|=\sqrt{\psi_{\mathrm{d}}^{2}+\psi_{\mathrm{q}}^{2}}=\sqrt{0.785^{2}+0.256^{2}} \mathrm{Vs}=0.825 \mathrm{Vs}
$$

Hence, the electrical angular speed of the rotor becomes

$$
\omega_{\mathrm{m}}=\frac{\left|\underline{u}_{\mathrm{s}}\right|}{\left|\underline{w}_{\mathrm{s}}\right|}=\frac{326.6 \mathrm{~V}}{0.825 \mathrm{Vs}}=395.9 \mathrm{rad} / \mathrm{s}
$$

and the corresponding rotational speed is

$$
n=\frac{\omega_{\mathrm{m}}}{2 \pi p}=\frac{395.9 \mathrm{rad} / \mathrm{s}}{2 \pi \cdot 2} \cdot 60 \mathrm{~s} / \mathrm{min}=1890 \mathrm{r} / \mathrm{min}
$$

The torque and mechanical power are

$$
\begin{gathered}
T_{\mathrm{M}}=\frac{3 p}{2} \psi_{\mathrm{f}} i_{\mathrm{q}}=\frac{3 \cdot 2}{2} \cdot 1.040 \mathrm{Vs} \cdot 7.3 \mathrm{~A}=22.8 \mathrm{Nm} \\
P_{\mathrm{M}}=T_{\mathrm{M}} \frac{\omega_{\mathrm{m}}}{p}=22.8 \mathrm{Nm} \cdot \frac{396 \mathrm{rad} / \mathrm{s}}{2}=4.5 \mathrm{~kW}
\end{gathered}
$$

The vector diagrams are shown below.

(a)

(b)

Remark: It can be noticed that the torque decreases more than inversely proportionally to the speed in the field-weakening region and the mechanical power decreases. In surface-mounted permanent-magnet machines, the d component of the current produces no torque; it only magnetises against the permanent magnets in order to decrease the stator flux magnitude.

