Electrical Machines

- Lecture outcomes (what you are supposed to learn):
 - List different types of rotating electrical machines
 - Recognize the advantages and disadvantages of each type
 - Describe the applications of electrical machines
 - Understand the working principle of electrical machines
 - Describe the construction of electrical machines

Introduction

• The quasi totality of the electric power generated worldwide is three-phase.

Introduction

• Illustration of the electric energy transmission and distribution

3-phase voltage generation

Simple generator

$$e = N \frac{d\Phi}{dt}$$

■ Better utilization of iron and other materials

Connecting the 3-phase voltages

• 3 single-phase circuits at different phase angle!

☐ The instantaneous power is pulsating

Connecting the 3-phase voltages

The potential difference is known but not the potentials!

☐ The same power can be transferred with only 3 wires instead of 6

☐ The instantaneous power of 3 phase system is constant over time

Rotating Machines

- Nearly 100% of the worldwide electrical energy is produced by rotating electrical machines.
- More than 65% of the electrical energy is consumed by electric motors in different industry applications.
- Tightened requirements on energy efficiency call for better motors and careful choice of motor drives.
- Multitude of motor drive solutions appeal for Engineering analytical and multidisciplinary skills.

Classification of Electric Machines

Motor Applications

- Industry applications
 - Grinding (hionta)
 - Milling (jauhaminen)
 - Pumping
 - Air compressing
 - Vacuum pumping
 - Hoists and lifts (nosturit ja hissit)
- Transport

Large starting torque, extended speed range

- Electric vehicles
- Rail transport
- Cruises and ships

Prius hybrid

Prius motor

Anouar Belahcen

Generator Applications

- Power plants
 - Hydropower plants low speed, large number of poles, salient
 - Thermo and nuclear power plants High speed 2-4 poles cylindrical turbogenerators
- Wind power
 - Cage induction machine
 - Doubly Fed IG (DFIG)
 - PM machines
 - · High speed and low speed
- Emergency power supply
 - Salient pole synch machine
 - voltage regulation
- Car industry
 - DC generators
 - alternators

Basic structure of electric machine

Cylindrical machine Uniform air gap

Salient pole machine Non-uniform air gap

- Slots with conductors
- Iron core
- Laminations

Basic structure of electric machine

Basic structure of electric machine

Electromagnetic energy conversion

Conductor moving in magnetic field
 Motional voltage

 Current carrying conductor in magnetic field Electromagnetic force

Both phenomena occur simultaneously in energy conversion process

Cross section view of dc machine

Structure of the stator of dc machine

Structure of the rotor of dc machine

- Conductors interconnected to form windings
- Armature winding = in which voltage is induced
- Field winding = the one that produces the primary flux
- Permanent magnet can be used to produce the flux

Operation of DC Machines

- Operates as motor and generator, mainly used as motor
- Variable speed, large and small power range
- Field winding currying DC-current in stator
- flux symmetrically distributed about pole axis
- Armature winding in rotor induced alternating voltage
- Mechanical Commutator and brush assembly rectify voltage
- Armature current distribution fixed in space
- MMF of armature winding along quadratic axis

Small induction machine - Construction

Large induction machine - Construction

Operation principle of induction machine

- Three-phase windings displaced from each other by 120 degrees
- Phase coils produces sinusoidal distributed mmf wave
- Alternating currents in each coil produce pulsating mmf waves
- Mmf waves displaced by 120 degrees in space from each other
- Resultant mmf wave is rotating along the air gap with constant peak

Running operation principles

- Rotor circuit is closed
- Induced voltages produce rotor currents
- Currents interacts with air gap field and produce torque
- Rotor starts to rotate
- Relative speed decreases
- Induced voltage decreases
- Speed settles to steady state value with torque balance

Principal characteristics

$$s = \frac{n_{\rm s} - n}{n_{\rm s}}$$

frequency of rotor currents

$$f_2 = \frac{p}{120}(n_s - n) = sf_1$$

Rotor voltage

$$E_{2s} = 4.44 f_2 N_2 \Phi_p K_{W2} = s E_2$$

- speed of rotor field
 - with respect to the rotor is
 - with respect to the stator is

$$n_2 = \frac{120 f_2}{p} = s n_s$$

$$n + n_2 = n_s$$

Energy conversion and losses

$$P_{\rm in} = \sqrt{3} UI \cos \theta$$

Aalt School
$$P_{\text{in}} = \sqrt{3} UI \cos \theta$$
 $P_{\text{out}} = T_{\text{mech}} \omega_{\text{mech}}$

$$Eff = \frac{P_{\text{out}}}{P_{\text{in}}}$$

European commitments

By the year 2020, the plan of the European Commission called for:

- 20% energy saving
- 20% reduction in greenhouse gas emissions
- 20% share of renewable energy in overall EU energy consumption
- 10% renewable energy component in transport fuel

International efficiency (IE) of motors

- Efficiency classes of low-voltage (< 1000V) 3-phase 50/60 Hz squirrel cage induction motors from 0,75 kW to 375 kW, with 2-, 4- or 6-poles:
 - IE4 = a non-identified efficiency level for future technology such as PM motor technology
 - IE3 = high efficiency
 - IE2 = standard efficiency
 - IE1 = low efficiency
- The efficiency requirements are mandatory for motors and variable speed drives

At what cost efficiency is improved?

But! Compute the saving on 10 years 10 h/day! Energy cost 0.3 €/kWh

6,5 % price increase From IE2 to IE3

Structure of synchronous machines

Main characteristics

- rotates at constant speed for a given supply frequency.
- primary generation devices of the electric power system.
- Operates both as generator and motor
- can draw either a lagging or a leading reactive current from the supply system.

Usage of different types of synch. machines

- Non-salient pole generator
 - high speed (2 4 poles)
 - large power (100 1600 MVA)
 - steam and nuclear power plants
- Salient pole generator
 - small and mid-size power (0 800 MVA)
 - small motors for electrical clocks and other domestic devices
 - mid size generators for emergency power supply
 - mid size motors for pumps and ship propulsion
 - large size generators in hydro-electric power plants

Starting

high inertia of the rotor prohibits direct connection into supply net

variable-frequency supply or start as an induction motor

Power factor control

Real Power

$$P = 3V_{\rm t}I_{\rm a}\cos\phi$$

wer
$$P = 3V_{t}I_{a}\cos\phi \qquad P = 3\frac{V_{t}E_{f}}{X_{s}}\sin\delta$$

constant power

$$|I_a \cos \phi| = \text{const.}$$

$$E_{\rm f} \sin \delta = {\rm const}$$

reactive current can be controlled by field current

Permanent Magnet Machine

- No field current
- No filed control
- Cost of PM
- Power factor ?

PM rotor configurations

- a) surface mounted magnets
- b) inset rotor with surface magnets
- c) surface magnets with pole shoes
- d) embedded circumferential magnets
- e) embedded radial magnets
- f) embedded V-magnets with shaped air-gap
- g) permanent magnet assisted synchronous reluctance

