
Outcome of this lecture

At the end of this lecture you will be able to:

• List the different parts of an induction machine

• Explain the operation principles of the machine

• Use the equivalent circuit model of the machine

• Analyze the steady-state operation of the machine

• Distinguish between different control methods of the machine

Your understanding of the rotating field theory will be enhanced



Contents of this lecture

• Structure and construction of Induction Machines

• Rotating magnetic field

• Operation modes of Induction Machines

• Equivalent Circuit of Induction Machines

• Performance characteristics of Induction Machines

• Basics of speed control of Induction Machines
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Construction – small machine



Construction – large machine



Construction – spars parts



Active parts and mounting

Rotor bars (slightly skewed)

End ring



• Three-phase windings displaced from each other by 120 degrees in space

• Phase coils produces sinusoidal distributed mmf wave centered on coil axis

• Alternating currents in each coil produce pulsating mmf waves

• Mmf waves are displaced by 120 degrees in space from each other

• Resultant mmf wave is rotating along the air gap with constant peak

Basic operation principle
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Rotating magnetic field – phase MMFs
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Resulting MMF– graphical method
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Resulting MMF – analytical method



• The resultant mmf vector retains its sinusoidal distribution in space

• It moves around the air gap – one revolution per period

• Reversal of currents phase sequence change in direction of rotation
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• Sinusoidal flux density distribution in space

• Flux per pole

• Flux linkage

• Induced voltage
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Induced voltages

Derive this equation at home
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• stationary wound rotor induction machine can be used as a phase shifter
• Rotor open-circuited
• Rotating field in the air gap – speed ns
• Field induces voltages in stator and rotor windings – same frequency
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Standstill operation – phase shifter



• Can be used as a variable polyphase voltage source too
• Continuous variation of voltage
• No sliding connection

+ Continuous variation of the output voltage
+ No sliding electric connections
- High leakage inductances
- High magnetizing current
- High cost

1

0 1 2

in<
< ∗

E V
V E E

Standstill operation - induction regulator



• Rotor circuit is closed

• Induced voltages produce rotor currents

• Currents interacts with air gap field and produce torque

• Rotor starts to rotate

• Relative speed decreases

• Induced voltage decreases

• Speed settles to steady state value according to torque balance

Running operation principles



• Slip

• Frequency of induced rotor currents

• Induced rotor voltage

• Speed of induced rotor field with respect to the rotor is

• Speed of induced rotor field with respect to the stator is
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Running operation - modes



Equivalent circuit model

Assume three-phase wound-rotor induction machine

• Cage winding can be represented by an equivalent three-phase winding

• At steady-state the magnetic fields rotate at synchronous speed

• Resultant air gap field induce voltages in stator and rotor windings
• Supply frequency f1 in stator
• slip frequency f2 in rotor

• Equivalent circuit appears to be identical to that of a transformer



Stator side per-phase quantities

• Equivalent circuit similar to transformer primary

• Magnetizing current 20 – 50 % of stator current (1 – 5 % in transformer)

• X1 larger than in transformer due to air gap and distributed windings
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Rotor winding per-phase quantities

• E2 induced voltage at standstill (f1)

• R2 winding resistance

• L2 leakage inductance

• f2 = sf1

• rotor current can be expressed as
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Matching the rotor an stator

• Although the amplitude and phase are the same the frequency is different !

• Power associated with the equivalent circuit  (air-gap power)
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• Same frequency in stator and in rotor

• Turns ratio has to be taken into account

• The stator referred quantities
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• Air gap power crosses the air gap

• Includes rotor copper loss P2 and mechanical power Pmech

• A fraction s is dissipated in rotor resistance P2

• The fraction (1-s) is converted into mechanical power
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• approximate equivalent circuit

• IEEE-recommended equivalent circuit

Different equivalent circuits



Thevenin equivalent circuit
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• No-load test at nominal voltage and frequency

• Blocked rotor test at nominal current, reduced voltage and frequency

• DC-resistance measurement

• No-load power core losses + windage and friction losses

• Blocked rotor reactances

• Equivalent circuit used to predict performances characteristics:
• Efficiency, power factor, current, starting torque, maximum (pull-out) torque, etc…

Equivalent circuit parameters



• Torque per phase Tmech

• 5 % difference in torque prediction depending on the kind of equivalent
circuit
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Torque profile
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• Total torque obtained by multiplying per phase torque by number of  phases

2
th

mech
syn 2

1 VT s
Rϖ

≡
ϒ

2
th 2

mech 2
syn 2th

1
( )

V RT
sX Xϖ
ϒ

≡
ϒ∗



Maximum torque
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• Maximum torque independent from rotor resistance
• Corresponding speed depends on rotor resistance



Current and power factor

• Typical starting current 5 – 8 times the rated current

• Power factor
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Efficiency
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Power flow

• Motoring

• Generating

• Plugging mode

rotor losses !



Effects of rotor resistance

• Small rotor resistance
+ High efficiency
+ Small nominal slip
- Small starting torque
- Large starting current

• Large rotor resistance
- Poor efficiency
- Large nominal slip
+ Large starting torque
+ Small starting current

• In wound-rotor external resistance connected to rotor through the slip rings



Deep-bar squirrel-cage

• Rotor frequency changes  with speed

• Effective rotor resistance changes with frequency if adequate shape of rotor
bars (skin effect)



• Two rotor cages each with its own end ring

• Outer cage with small cross section and high resistivity material

• Inner cage with larger cross section and low resistivity material

• At standstill rotor current flows in outer cage large resistance

• At small slip current flows in both cages smaller resistance

• Equivalent circuit formed by additional branches in the rotor

Double-cage rotor



Speed control - basics

• Speed is determined by:
• Supply frequency
• Number of pole-pairs
• Slip

• Pole changing
• Discrete steps
• Expensive
• Normally ratio 2:1
• Cage induction machine only

• line voltage control
• Torque is proportional to V2

• Increased slip inefficient operation
• Used with fans and pumps
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• Auto transformer

• Solid-state controller
• Open loop operation

• Closed loop operation
– Precise speed control
– Requires expensive sensor

Line voltage control



Line frequency control
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For non regenerative operation
a diode bridge is used as
rectifier and PWM inverter is
used for frequency control



• Below nominal speed
• Voltage-frequency ratio kept constant to avoid saturation
• Constant flux and constant torque

• Above nominal speed
• Voltage kept constant to avoid electric breakdown
• Constant voltage and constant power
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Rotor resistance control

• External 3-phase resistance

• DC-resistance and chopper
• Open or closed loop

What about the efficiency ?



rotor slip energy recovery

• Efficient use of rotor slip power
• Possibility to supply power

from the rotor side as well



Starting of induction motors

• Direct connection
• Starting current 5…8 IN
• Line voltage drop
• Long starting time
• Overheating

• Reduced-voltage starting
• Step-down autotransformer
• Star-delta method
• Solid state voltage controller

– Reduced torque


