1) $N_{A}=350$ turns, $N_{B}=150$ turns and the material of the core is cast steel.
a) We will use Ampere's law to calculate the current that can produce desired magnetic flux density $B=0.5 T$ in the airgap.

$$
\begin{aligned}
& \int H \cdot d l=N \cdot I \\
& H \cdot l=\sum N \cdot I=F
\end{aligned}
$$

Where, B is the flux density, H is magnetic field strength and N.I is the mmf.
In our case we can write ;

$$
H_{c} \cdot l_{c}+H_{g} \cdot l_{g}=N \cdot I
$$

Since there is no flux leakage and fringing effect ;

$$
B_{c}=B_{g}=0.5 T
$$

Using the graph given in page 6, Fig.1.7 for cast steel magnetic field strength to generate $0.5 T$ is found as $H_{c}=350 \mathrm{~A} / \mathrm{m}$

From the material equation $B=\mu . H$ and

$$
\mu_{c}=\frac{B_{c}}{H_{c}}=\frac{0.5}{H_{c}}=1.439 \cdot 10^{-3} \mathrm{H} / \mathrm{m}
$$

Now from the given figure of core we can find the magnetic path lengths l_{g} and l_{c};

$$
\begin{gathered}
l_{g}=0.0015 \mathrm{~m} \\
l_{c}=4 \cdot(0.06+0.01+0.01)-0.0015=0.3185 \mathrm{~m}
\end{gathered}
$$

Now magnetic field strength in the airgap is;

$$
H_{g}=\frac{B_{g}}{\mu_{0}}=\frac{0.5}{4 \pi \cdot 10^{-7}}=397887.36 \mathrm{~A} / \mathrm{m}
$$

From the Ampere's law;

$$
F=N \cdot I=H_{c} \cdot l_{c}+H_{g} \cdot l_{g}=111.47+596.83=708.3 \text { Aturns }
$$

* For the case where coils are wound and supplied to generate flux in the same direction;

$$
\begin{gathered}
F=N_{A} I_{1}+N_{B} I_{1} \\
I_{1}=\frac{F}{N_{A}+N_{B}}=\frac{708.3}{350+150}=1.416 \mathrm{~A}
\end{gathered}
$$

* For the case where coils are wound and supplied to generate flux in the opposite direction;

$$
F=N_{A} I_{2}-N_{B} I_{2}
$$

$$
I_{2}=\frac{F}{N_{A}-N_{B}}=\frac{708.3}{350-150}=3.54 \mathrm{~A}
$$

b) Self Inductance can be found by using;

$$
L=\frac{\phi}{I}=\frac{N^{2}}{R}
$$

Where R is the reluctance of the magnetic path and given by ;

$$
\begin{gathered}
R=\frac{l}{\mu \cdot A} \\
A_{g}=A_{c}=4 \cdot 10^{-4} \mathrm{~m}^{2}
\end{gathered}
$$

Reluctance for the airgap;

$$
R_{g}=\frac{l}{\mu_{0} \cdot A_{g}}=\frac{0.0015}{4 \pi \cdot 10^{-7} \cdot 4 \cdot 10^{-4}}=2984155 \text { Aturns } / \mathrm{Wb}
$$

Similarly for the core;

$$
R_{c}=\frac{l}{\mu_{c} \cdot A_{c}}=\frac{0.3185}{1.439 \cdot 10^{-3} \cdot 4 \cdot 10^{-7}}=556818 \text { Aturns } / \mathrm{Wb}
$$

So the inductances;

$$
\begin{aligned}
& L_{A}=\frac{N_{A}^{2}}{R_{c}+R_{g}}=\frac{350^{2}}{2984155+556818}=34.6 \mathrm{mH} \\
& L_{B}=\frac{N_{B}^{2}}{R_{c}+R_{g}}=\frac{150^{2}}{2984155+556818}=6.35 \mathrm{mH}
\end{aligned}
$$

c) $I_{A}=2 A$ is given and coil B is disconnected. Using the Ampere's Law ;

$$
\begin{gathered}
F=N_{A} \cdot I_{A}=H_{c} \cdot l_{c}+H_{g} \cdot l_{g} \\
350 \cdot 2=\frac{B_{c}}{\mu_{c}} \cdot l_{c}+\frac{B_{g}}{\mu_{0}} \cdot l_{g}
\end{gathered}
$$

Since there is no leakage flux and fringing $B_{c}=B_{g}$

$$
\begin{gathered}
700=B_{g}\left[\frac{l_{c}}{\mu_{c}}+\frac{l_{g}}{\mu_{0}}\right] \\
B_{g}=0.49 T
\end{gathered}
$$

2) Given parameters:
$N_{1}=200$ turns, $N_{2}=400$ turns
$B=1.2 \cdot \sin (377 t)$

$$
A_{c}=25 \mathrm{~cm}^{2}=25 \cdot 10^{-4} \mathrm{~m}^{2}, l_{c}=90 \mathrm{~cm}=0.9 \mathrm{~m}
$$

Stacking factor $s f=0.95$
$\mu_{r}=10000$
a) Faraday's law of induction :

$$
\begin{gathered}
e(\mathrm{t})=N \cdot \frac{d \phi}{d t} \\
\phi=B \cdot \mathrm{~A}_{e f f}=B \cdot A_{c} \cdot s f \\
\phi=25 \cdot 10^{-4} \cdot 0.95 \cdot 1.2 \cdot \sin (377 t)=2.85 \cdot 10^{-3} \cdot \sin (377 t)
\end{gathered}
$$

Placing flux to the Faraday's law we obtain;

$$
e_{1}(\mathrm{t})=200 \cdot 2.85 \cdot 10^{-3} \cdot 377 \cdot \cos (377 t)=215 \cos (377 t)
$$

$e_{1 \text { max }}=215 \mathrm{~V}$ since maximum value of \cos function is ' 1 '. Therefore rms value is;

$$
e_{1 r m s}=\frac{e_{\max }}{\sqrt{2}}=152 \mathrm{~V}
$$

b) From Ampere's Law:

$$
\begin{gathered}
h \cdot l=N \cdot i \\
i=\frac{h \cdot l}{N} \\
h=\frac{B}{\mu}=\frac{B}{\mu_{r} \mu_{0}}=\frac{1.2 \cdot \sin (377 t)}{10000 \cdot 4 \pi \cdot 10^{-7}} \\
h=95.5 \sin (377 t)
\end{gathered}
$$

Therefore i is:

$$
\begin{gathered}
i=\frac{h \cdot l}{N}=\frac{95.5 \cdot \sin (377 t) \cdot 0.9}{200} \\
i=0.43 \cdot \sin 377 t \mathrm{~A} \\
I_{\max }= \\
0.43 \text { and } I_{r m s}=\frac{I_{\max }}{\sqrt{2}}=0.3 \mathrm{~A}
\end{gathered}
$$

c) From the Faraday's law:

$$
e_{2}(\mathrm{t})=N_{2} \cdot \frac{d \phi}{d t}
$$

We have found ϕ as:

$$
\phi=2.85 \cdot 10^{-3} \cdot \sin (377 t)
$$

Therefore induced voltage in the second winding is:

$$
\begin{aligned}
& e_{2}(t)=400 \cdot 377 \cdot 2.85 \cdot 10^{-3} \cdot \cos (377 t) \\
& e_{2 \max }=429.8 \text { and } e_{2 r m s}=\frac{e_{2 \max }}{\sqrt{2}}=304 \mathrm{~V}
\end{aligned}
$$

3)

(c)

Given parameters :
$A=2 \mathrm{~cm}^{2}$
$f=60 \mathrm{~Hz}$
$N=1000$ turns
From the given circuit and using the Kirchoff's law:

$$
\begin{equation*}
U_{i}=U_{L}+U_{0} \tag{1}
\end{equation*}
$$

And from the Faraday's law:

$$
\begin{gather*}
U_{L}=\frac{d \phi}{d t}=N \cdot A \cdot \frac{d B}{d t} \tag{2}\\
U_{0}=R \cdot i \tag{3}
\end{gather*}
$$

From the Ampere's law we know that:

$$
\begin{aligned}
& H \cdot l=N \cdot i \\
& i=\frac{H \cdot l}{N}
\end{aligned}
$$

Putting this into eq. (2) gives:

$$
\begin{equation*}
U_{0}=R \cdot \frac{H \cdot l}{N} \tag{4}
\end{equation*}
$$

And if we place this equation into the eq.(1) we obtain:

$$
U_{i}=N \cdot A \cdot \frac{d B}{d t}+\frac{R \cdot H \cdot l}{N}
$$

* For $t=0$:

From given characteristic curve $B=0, H=0$ since $H=\frac{B}{\mu}$.
So from eq. (4) $U_{0}=0$ and from eq. (1) $U_{i}=U_{0}$
Therefore,

$$
U_{i}=N \cdot A \cdot \frac{d B}{d t}
$$

At $t=0, U_{i}=108 V$ (from given waveform). From the eq. (5):

$$
\begin{gathered}
108=\frac{2}{10000} \cdot 1000 \cdot \frac{d B}{d t} \\
\frac{d B}{d t}=540 \\
B=\int 540 \cdot d t \\
B=540 \cdot t
\end{gathered}
$$

For $B=1.5 T$

$$
\begin{gathered}
1.5=540 \cdot t \\
t_{s}=\frac{1.5}{540}=\frac{1}{360} \mathrm{~s}
\end{gathered}
$$

* For $0 \leq t \leq t_{s}$

From the B-H curve we can find the values of B and H :

$$
\begin{aligned}
& B<1.5 T \\
& H=0 \mathrm{~A} / \mathrm{m} \\
& U_{0}=0 \mathrm{~V} \\
& U_{L}=U_{i}=108 \mathrm{~V}
\end{aligned}
$$

* For $t_{s} \leq t \leq \frac{1}{120}$

$$
\begin{aligned}
& B=1.5 \mathrm{~T} \\
& \frac{d B}{d t}=0 \text { and } U_{L}=0 \\
& U_{0}=U_{i}=108 \mathrm{~V}
\end{aligned}
$$

* For $t \geq \frac{1}{120}$

$$
\begin{aligned}
& U_{i}=-108 \mathrm{~V} \\
& -1.5 T<B<1.5 T
\end{aligned}
$$

When $B=0$;

$$
\begin{aligned}
& H=0 \mathrm{~A} / \mathrm{m} \\
& U_{0}=0 \mathrm{~V}
\end{aligned}
$$

So,

$$
\begin{aligned}
& U_{L}=U_{i}=-108 \mathrm{~V} \\
& -108=N \cdot A \cdot \frac{d B}{d t} \\
& \frac{d B}{d t}=-\frac{108}{0.2}=-540 \\
& B=\int-540 \cdot d t \\
& B=-540 \cdot t+B_{0}
\end{aligned}
$$

Therefore,

$$
-1.5=-540 \cdot t_{s w}+1.5
$$

Where $t_{s w}=1 / 180 s$.

Total time is : $\frac{1}{120}+\frac{1}{180}=\frac{1}{72} s$

* For $\frac{1}{72} \leq t \leq \frac{1}{60}$

$$
\begin{aligned}
& B=-1.5 \mathrm{~T} \\
& \frac{d B}{d t}=0 \\
& U_{L}=0 \mathrm{~V} \\
& U_{i}=U_{0}=-108 \mathrm{~V}
\end{aligned}
$$

