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Introduction

A great many variables in the social sciences are dichotomous—employed vs. unemployed,
married vs. unmarried, guilty vs. not guilty, voted vs. didn’t vote. It’s hardly surprising, then,
that social scientists frequently want to estimate regression models in which the dependent
variable is a dichotomy. Nowadays, most researchers are aware that there’s something wrong

with using ordinary linear regression for a dichotomous dependent variable, and that it’s

better to use logistic or probit regression. But many of them don’t know what it is about
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linear regression that makes dichotomous variables problematic, and they may have only a
vague notion of why other methods are superior.

In this chapter, we focus on logistic regression (a.k.a. logit analysis) as an optimal
method for the regression analysis of dichotomous (binary) dependent variables. Along the
way, we’ll see that logistic regression has many similarities to ordinary linear regression
analysis. To understand and appreciate the logistic model, we first need to see why ordinary

linear regression runs into problems when the dependent variable is dichotomous.

Dichotomous Dependent Variables: Example

To make things tangible, let’s start with an example. Throughout this chapter, we’ll be
examining a data set consisting of 147 death penalty cases in the state of New Jersey. In all
of these cases, the defendant was convicted of first-degree murder with a recommendation by
the prosecutor that a death sentence be imposed. Then a penalty trial was conducted to
determine whether the defendant would receive a sentence of death or life imprisonment. Our
dependent variable DEATH is coded 1 for a death sentence, and 0 for a life sentence. The
aim is to determine how this outcome was influenced by various characteristics of the
defendant and the crime.

Many potential independent variables are available in the data set, but let’s consider

three of special interest:

BLACKD Coded 1 if the defendant was black, otherwise 0.

WHITVIC Coded 1 if the victim was white, otherwise 0.

SERIOUS A rating of the seriousness of the crime, as evaluated by a panel
of judges.

The variable SERIOUS was developed in an auxiliary study in whijch panels of trial judges
were given written descriptions of each of the crimes in the original data set. These
descriptions did not mention the race of the defendant or the victim. Each judge evaluated 14
or 15 cases and ranked them from least serious to most serious. Each case was ranked by four

to six judges. As used in this chapter, the SERIOUS score is the average ranking given to

each case, ranging from 1 (least serious) to 15 (most serious).
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Using the REG procedure in SAS, I estimated a linear regression model that uses
DEATH as the dependent variable and the other three as independent variables. The SAS

code is

PROC REG DATA=penalty;
MODEL death=blackd whitvic serious;

RUN;
Results are shown in Output 2.1. Neither of the two racial variables have coefficients that are
significantly different from 0. Not surprisingly, the coefficient for SERIOUS is highly
significant—more serious crimes are more likely to get the death penalty.

Should we trust these results, or should we ignore them because the statistical
technique is incorrect? To answer that question we need to see why linear regression is
regarded as inappropriate when the dependent variable is a dichotomy. That’s the task of the

next section.

Output 2.1 Linear Regression of Death Penalty on Selected Independent Variables

Number of Observations Read 147
Number of Observations Used 147

Analysis of Variance

Sumof Mean

Source DF Squares Square F Value Pr>F
Model 3 261611 0.87204 4.11 0.0079
Error 143 30.37709 0.21243

.Corrected Total : 146 32.99320

Root MSE 0.46090 R-Square 0.0793

Dependent Mean 0.34014  Adj R-Sq 0.0600
Coeff Var 1 135.50409 '
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Parameter Estimates

Parameter Standard
Variable DF Estimate Error tValue Pr> |t|

Intercept 1 -0.05492 0.12499 -0.44 0.6610
blackd 1 0.12197 0.08224 1.48 0.1403
whitvic 1 0.05331 0.08411 0.63 0.5272

1

serious 0.03840 0.01200 3.20 0.0017

2.3 Problems with Ordinary Linear Regression

Not so long ago, it was common to see published research that used ordinary least squares
(OLS) linear regression to analyze dichotomous dependent variables. Some people didn’t
know any better. Others knew better, but didn’t have access to good software for alternative
methods. Now, every major statistical package includes a procedure for logistic regression,
so there’s no excuse for applying inferior methods. No reputable social science journal
would publish an article that used OLS regression with a dichotomous dependent variable.

Should all the earlier literature that violated this prohibition be dismissed? Actually,
most applications of OLS regression to dichotomous variables give results that are
qualitatively quite similar to results obtained using logistic regression. There are exceptions,
of course, so I certainly wouldn’t claim that there’s no need for logistic regression. But as an
approximate method, OLS linear regression does a surprisingly good job with dichotomous
variables, despite clear-cut violations of assumptions.

What are the assumptions that underlie OLS regression? While there’s no single set
of assumptions that justifies linear regression, the list in the box below is fairly standard. To
keep things simple, I’ve included only a single independent variable x, and I’ve presumed

that x is “fixed” across repeated samples (which means that every sample has the same set of

x values). The i subscript distinguishes different members of the éample.
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Assumptions of the Linear Regression Model
Y, =a+ fx, +é&

E(g)=0

var(g,) = 0~

cov(g;,€,)=0

“noa e

&, ~ Normal

Assumption 1 says that y is a linear function of x plus a random disturbance term ¢,
for all members of the sample. The remaining assumptions all say something about the
distribution of £ What’s important about assumption 2 is that E(£) (the expected value of 9
does not vary with x, implying that x and € are uncorrelated. Assumption 3, often called the
homoscedasticity assumption, says that the variance of £1is the same for all observations.
Assumption 4 says that the random disturbance for one observation is uncorrelated with the
random disturbance for any other observation. Finally, assumption 5 says that the random
disturbance is normally distributed. If all five assumptions are satisfied, ordinary least
squares estimates of azand [ are unbiased and have minimum sampling variance (minimum
variability across repeated samples).

Now suppose that y is a dichotomy with possible values of 1 or 0. It’s still reasonable
to claim that assumptions 1, 2, and 4 are true. But if 1 and 2 are true for a dichotomy, then 3

and 5 are necessarily false. First, let’s consider assumption 5. Suppose that y,=1. Then
assumption 1 implies that £=1-a~/x;. On the other hand, if y=0, we have g=o~fx;.
Because &; can only take on two values, it’s impossible for it to have a normal distribution

(which has a continuum of values and no upper or lower bound). So assumption 5 must be
rejected.

To evaluate assumption 3, it’s helpful to do a little preliminary algebra. The expected
value of y; is, by definition,

E(y,)=1xPr(y, =1)+ 0xPr(y, =0).

If we define p; = Pr(y;=1), this reduces to

E(p = pi
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In general, for any dummy variable, its expected value is just the probability that it is equal
to 1. But assumptions | and 2 also imply another expression for this expectation. Taking the
expected values of both sides of the equation in assumption 1, we get
E(y,)=E(o+ fx +¢€,)
= E(o))+ E(fix)+ E(€,)
=a+ f,.
Putting these two results together, we get
p,=a+ [, 2.1
which is sometimes called the /inear probability model. As the name suggests, this model
says that the probability that y=1 is a linear function of x. Regression coefficients have a
straightforward interpretation under this model. A 1-unit change in x produces a change of S
in the probability that y=1. In Output 2.1, the coefficient for SERIOUS was .038. So we can
say that each 1-point increase in the SERIOUS scale (which ranges from 1 to 15) is
associated with an increase of .038 in the probability of a death sentence, controlling for the
other variables in the model. The BLACKD coefficient of .12 tells us that the estimated
probability of a death sentence for black defendants is .12 higher than for nonblack
defendants, controlling for other variables.

Now let’s consider the variance of &;. Because x is treated as fixed, the variance of ¢;
is the same as the variance of y;. In general, the variance of a dummy variable is p(1-p;).
Therefore, we have

var(g;)) = p,(1-p))=(a+ ﬂx;‘)(l —- ﬂx,)
We see, then, that the variance of & must be different for different observations and, in
particular, it varies as a function of x. The disturbance variance is at a maximum when p;=.5
and gets small when p; is near 1 or 0.

We’ve just shown that a dichotomous dependent variable in a linear regression
model necessarily violates assumptions of homoscedasticity (assumption 3) and normality
(assumption 5) of the error term. What are the consequences? Not as serious as you might
think. First of all, we don’t need these assumptions to get unbiased estimates. If just
assumptions 1 and 2 hold, ordinary least squares will produce unbiased estimates of aand £.

Second, the normality assumption is not needed if the sample is reasonably large. The central

limit theorem assures us that coefficient estimates will have a distribution that is
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approximately normal even when € is not normally distributed. That means that we can still
use a normal table to calculate p-values and confidence intervals. If the sample is small,
however, these approximations could be poor.

Violation of the homoscedasticity assumption has two undesirable consequences.
First, the coefficient estimates are no longer efficient. In statistical terminology, this means
that there are alternative methods of estimation with smaller standard errors. Second, and
more serious, the standard error estimates are no longer consistent estimates of the true
standard errors. That means that the estimated standard errors could be biased (either upward
or downward) to unknown degrees. And because the standard errors are used in calculating
test statistics, the test statistics could also be problematic.

Fortunately, the potential problems with standard errors and test statistics are easily
fixed. Beginning with SAS 9.2, PROC REG offers a heteroscedasticity consistent covariance
estimator that uses the method of Huber (1967) and White (1980), sometimes known as the
“sandwich” method because of the structure of the matrix formula. This method produces
consistent estimates of the standard errors even when the homoscedasticity assumption is
violated. To implement the method in PROC REG, simply put the option HCC on the
MODEL statement:

PROC REG DATA=penalty;
MODEL death=blackd whitvic serious / HCC;
RUN;
Now, in addition to the output in Output 2.1, we get the corrected standard errors, f-statistics,

and p-values shown in Output 2.2. In this case, the correction for heteroscedasticity makes

almost no difference in the results.
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Output 2.2 Linear Regression of Death Penalty with Correction for Heteroscedasticity

Parameter Estimates
Heteroscedasticity

Consistent
Parameter Standard Standard
Varlable DF Estimate Error tValue Pr> |t| Error tValue Pr>|t|

Intercept 1 -0.05492 0.12499 -0.44 0.6610 0.11959 -0.46 0.6468

blackd 1 0.12197 0.08224 1.48 0.1403 0.08197 1.49 0.1390

whitvic 1 0.05331 0.08411 0.63 0.5272 0.08315  0.64 0.5224 |
1

serious 0.03840 0.01200  3.200.0017 0.01140.  3.37 0.0010

Although the HCC standard errors are an easy fix, be aware that they have inherently
more sampling variability than conventional standard errors (Kauermann and Carroll 2001),
and may be especially unreliable in small samples. For large samples, however, they should

be quite satisfactory.

In addition to these technical difficulties, there is a more fundamental problem with

the assumptions of the linear model. We’ve seen that when the dependent variable is a

dichotomy, assumptions 1 and 2 imply the linear probability model

D; =a+ﬂxi

While there’s nothing intrinsically wrong with this model, it’s a bit implausible, especially if x |
is measured on a continuum. If x has no upper or lower bound, then for any value of S there are
values of x for which p is either greater than 1 or less than 0. In fact, when estimating a linear
probability model by OLS, it’s quite common for predicted values generated by the model to be
outside the (0, 1) interval. (That wasn’t a problem with the regression in Output 2.1, which
implied predicted probabilities ranging from .03 to .65.) Of course, it’s impossible for the true |
values (which are probabilities) to be greater than 1 or less than 0. éo the only way the model
could be true is if a ceiling and floor are somehow imposed on p;, leading to considerable
awkwardness both theoretically and computationally.
These problems with the linear model led statisticians to develop alternative
approaches that make more sense conceptually and also have better statistical properties. The
most popular of these approaches is the logistic model, which is estimated by maximum

likelihood. Before considering the full model, let’s examine one of its key components—the

odds of an event.
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0dds and Odds Ratios

To appreciate the logistic model, it’s helpful to have an understanding of odds and odds
ratios. Most people regard probability as the “natural” way to quantify the chances that an
event will occur. We automatically think in terms of numbers ranging from 0 to 1, with a 0
meaning that the event will certainly not occur and a 1 meaning that the event certainly will
occur. But there are other ways of representing the chances of event, one of which—the
odds—has a nearly equal claim to being “natural.”

Widely used by professional gamblers, the odds of an event is the ratio of the
expected number of times that an event will occur to the expected number of times it will not
occur. An odds of 4 means we expect 4 times as many occurrences as non-occurrences. An
odds of 1/5 means that we expect only one-fifth as many occurrences as non-occurrences. In
gambling circles, odds are sometimes expressed as, say, 5 to 2,” but that corresponds to the
single number 5/2.

There is a simple relationship between probabilities and odds. If p is the probability

of an event and O is the odds of the event, then

0= p _  probability of event
1-p  probability of no event

2.2)

__9
1+0

This functional relationship is illustrated in Table 2.1.

p

Table 2.1 Relationship between Odds and Probability

Probability Odds
N 11
2 25
3 43
4 .67
5 1.00
6 1.50
i/ 2.33
.8 4.00
9 9.00
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Note that odds less than 1 correspond to probabilities below .5, while odds greater than 1
correspond to probabilities greater than .5. Like probabilities, odds have a lower bound of 0.
But unlike probabilities, there is no upper bound on the odds.

Why do we need the odds? Because it’s a more sensible scale for multiplicative
comparisons. If [ have a probability of .30 of voting in the next election, and your probability
of voting is .60, it’s meaningful to claim that your probability is twice as great as mine. But if
my probability is .60, it’s impossible for your probability to be twice as great. There’s no
problem on the odds scale, however. A probability of .60 corresponds to odds of .60/.40=1.5.
Doubling that yields odds of 3. Converting back to probabilities gives us 3/(1+3)=.75.

This leads us to the odds ratio, which is a widely used measure of the relationship
between two dichotomous variables. Consider Table 2.2, which shows the cross-tabulation of
race of defendant by death sentence for the 147 penalty-trial cases. The numbers in the table

are the actual numbers of cases that have the stated characteristics.

Table 2.2 Death Sentence by Race of Defendant for 147 Penalty Trials

Blacks Non-blacks Total
Death 28 22 50
Life 45 52 97
Total 73 74 147

Overall, the estimated odds of a death sentence are 50/97= .52. For blacks, the odds are
28/45 = .62. For nonblacks, the odds are 22/52 = .42. The ratio of the black odds to the
nonblack odds is 1.47. We may say, then, that the odds of a death sentence for blacks are 47%
greater than for nonblacks. Note that the odds ratio in a 2 X 2 table is also equal to the cross-
product ratio, which is the product of the two main-diagonal frequencies divided by the
product of the two off-diagonal frequencies. In this case, we have (52 x 28)/(22 x 45) = 1.47.

Of course, we can also say that the odds of a death sentence for nonblacks are
1/1.47 = .63 times the odds of a death sentence for blacks. Similarly, the odds of a /ife
sentence for blacks are .63 times the odds for nonblacks. So, depending on which categories

we’re comparing, we either get an odds ratio greater than 1 or its reciprocal, which is less

than 1.
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Implicit in much of the contemporary literature on categorical data analysis is the
notion that odds ratios (and various functions of them) are less sensitive to changes in the
marginal frequencies (for example, the total number of death and life sentences) than other
measures of association. In this sense, they are frequently regarded as fundamental
descriptions of the relationship between the variables of interest. As we shall see, odds ratios

are directly related to the parameters in the logistic regression model.

The Logistic Regression Model

Now we’re ready to introduce the logistic regression model, otherwise known as the logit
model. As we discussed earlier, a major problem with the linear probability model is that
probabilities are bounded by 0 and 1, but linear functions are inherently unbounded. The
solution is to transform the probability so that it’s no longer bounded.

Transforming the probability to an odds removes the upper bound. If we then take
the logarithm of the odds, we also remove the lower bound. Setting the result equal to a
linear function of the explanatory variables, we get the logistic model. For k explanatory
variables and i = 1,..., n individuals, the model is

log[lf—’] =a+ fx,+ fyx, +..+ B.x, (2.3)
where p; is, as before, the probability that y,=1. The expression on the left-hand side is
usually referred to as the logit or log-odds. (Natural logarithms are used throughout this
book. However, the only consequence of switching to base-10 logarithms would be to change
the intercept a.) As in ordinary linear regression, the x’s may be either quantitative variables
or dummy (indicator) variables.

Unlike the usual linear regression model, there is no random disturbance term in the
equation for the logistic model. That doesn’t mean that the model is deterministic because

there is still room for random variation in the probabilistic relationship between p; and y;.

Nevertheless, as we shall see later, problems may arise if there is unobserved heterogeneity
in the sample.

We can solve the logit equation for p; to obtain

exp(@+ Bix, + Byxip + ..+ Bixy) 2.4

i

1+ exp(a+ B,x, + Box,, +...+ B,x,)
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Exp(x) is the exponential function, equivalent to e*. In turn, e is the exponential constant,
approximately equal to 2.71828. Its defining property is that log(e*)=x. We can simplify
further by dividing both the numerator and denominator by the numerator itself:
_ 1

1+ exp(—a — Bix; — Boxiy == Bixi)

This equation has the desired property that no matter what values we substitute for the £’s

D; 2.5)

and the x’s, p; will always be a number between 0 and 1.

If we have a single x variable with &= 0 and = 1, the equation can be graphed to
produce the S-shaped curve in Figure 2.1. As x gets large or small, p gets close to 1 or 0 but
is never equal to these limits. From the graph, we see that the effect of a unit change in x
depends on where you start. When p is near .50, the effect is large; but when p is near O or 1,
the effect is small. More specifically, the slope of the curve is given by the derivative of p;

with respect to the covariate x;.
ap,
or= 0= D). @6)

This is known as the “marginal effect” of x on the event probability, which will be discussed
in Section 2.8. When =1 and p=.5, a 1-unit increase in x produces an increase of .25 in the
probability. When £ is larger, the slope of the S-shaped curve at p=.5 is steeper. When S is
negative, the curve is flipped horizontally so that p is near 1 when x is small and near 0 when
x is large. The derivative in equation (2.6) also applies when there is more than one x
variable, although then it’s a partial derivative.

There are alternative models that have similar S-shaped curves, most notably the
probit and complementary log-log models. I’1l discuss them briefly in the next chapter. But,
for several reasons, the logistic model is more popular:

= The coefficients have a simple interpretation in terms of' odds ratios.

* The logistic model is intimately related to the loglinear model, which is

discussed in Chapter 10.
= The logistic model has desirable sampling properties, which are discussed in
Section 3.13.

» The model can be easily generalized to allow for multiple, unordered categories

for the dependent variable.
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Figure 2.1 Graph of Logistic Model for a Single Explanatory Variable

P;

1.0 -
0.9 -
0.8 A
0.7 A
0.6 A
0.5 A
0.4 A
0.3 1
0.2 4
0.1 1
0.0 A

2.6  Estimation of the Logistic Model: General Principles

Now that we have a model for dichotomous dependent variables, the next step is to use
sample data to estimate the coefficients. How that’s done depends on the type of data you’re
working with. If you have grouped data, there are three readily available methods: ordinary
least squares, weighted least squares, and maximum likelihood.

Grouped data occurs when the explanatory variables are all discrete and the data is
arrayed in the form of a contingency table. We’ll see several examples of grouped data in
Chapter 4. Grouped data can also occur when data are collected from naturally occurring
groups. For example, suppose that the units of analysis are business firms and the dependent

variable is the probability that an employee is a full-time worker. Let P; be the observed
proportion of employees who work full-time in firm i. To estimate a logistic model by OLS,

we could simply take the logit transformation of P, which is log[P/( 1-P)}, and regress the

result on characteristics of the firm and on the average characteristics of the employees. A

weighted least squares (WLS) analysis would be similar, except that the data would be
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weighted to adjust for heteroscedasticity. The SAS procedure CATMOD does WLS
estimation for grouped data (in addition to maximum likelihood).

Maximum likelihood (ML) is the third method for estimating the logistic model for
grouped data and the only method in general use for individual-level data. With individual-
level data, we simply observe a dichotomous dependent variable for each individual along
with measured characteristics of the individual. OLS and WLS can’t be used with this kind

of data unless the data can be grouped in some way. If y; can only have values of 1 and 0, it’s

impossible to apply the logit transformation—you get either minus infinity or plus infinity.
To put it another way, any transformation of a dichotomy is still a dichotomy.

Maximum likelihood is a very general approach to estimation that is widely used for
all sorts of statistical models. You may have encountered it before with loglinear models,
latent variable models, or event history models. There are two reasons for this popularity.
First, ML estimators are known to have good properties in large samples. Under fairly
general conditions, ML estimators are consistent, asymptotically efficient, and
asymptotically normal. Consistency means that as the sample size gets larger the probability
that the estimate is within some small distance of the true value also gets larger. No matter
how small the distance or how high the specified probability, there is always a sample size
that yields an even higher probability that the estimator is within that distance of the true
value. One implication of consistency is that the ML estimator is approximately unbiased in
large samples. Asymptotic efficiency means that, in large samples, the estimates will have
standard errors that are, approximately, at least as small as those for any other estimation
method. And, finally, the sampling distribution of the estimates will be approximately normal
in large samples, which means that you can use the normal and chi-square distributions to
compute confidence intervals and p-values.

All these approximations get better as the sample size gets larger. The fact that these
desirable properties have only been proven for large samples does not mean that ML has bad
properties for small samples. It simply means that we usually don’t know exactly what the
small-sample properties are. And in the absence of attractive alternatives, researchers
routinely use ML estimation for both large and small samples. Although I won’t argue
against that practice, I do urge caution in interpreting p-values and confidence intervals when

samples are small. Despite the temptation to accept /arger p-values as evidence against the

null hypothesis in small samples, it is actually more reasonable to demand smaller values to
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compensate for the fact that the approximation to the normal or chi-square distributions may
be poor.

The other reason for ML’s popularity is that it is often straightforward to derive ML
estimators when there are no other obvious candidates. One case that ML handles very nicely
is data with categorical dependent variables.

The basic principle of ML is to choose as estimates those parameter values that, if
true, would maximize the probability of observing what we have, in fact, observed. There are
two steps to this: (1) write down an expression for the probability of the data as a function of
the unknown parameters, and (2) find the values of the unknown parameters that make the
value of this expression as large as possible.

The first step is known as constructing the likelihood function. To accomplish this
you must specify a model, which amounts to choosing a probability distribution for the
dependent variable and choosing a functional form that relates the parameters of this
distribution to the values of the explanatory variables. In the case of the logistic model, the
dichotomous dependent variable is presumed to have a binomial distribution with a single

“trial” and a probability of “success™ given by p;. Then p; is assumed to depend on the

explanatory variables according to equation (2.3), which is the logistic model. Finally, we
assume that the observations are independent across individuals.

The second step—maximization—typically requires an iterative numerical method,
which means that it involves successive approximations. Such methods are usually more
computationally demanding than a non-iterative method like ordinary least squares. For those
who are interested, I will work through the basic mathematics of constructing and
maximizing the likelihood function in Chapter 3. Here I focus on some of the practical

aspects of ML estimation with SAS.

Maximum Likelihood Estimation with PROC LOGISTIC

The most popular SAS procedure for doing ML estimation of the logistic regression model is
PROC LOGISTIC. SAS has several other procedures that will also do this, and we will meet
some of them in later chapters. But LOGISTIC has been around the longest, and it has the
largest set of features that are likely to be used by most data analysts.

Let’s estimate a logistic model analogous to the linear probability model that we

examined in Section 2.2. Minimal SAS code for this model is
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PROC LOGISTIC DATA=penalty;

MODEL death(EVENT='1')=blackd whitvic serious;

RUN;

Of course, there are also numerous options and special features that we’ll consider later.

One option that I’ve specified in the MODEL statement is EVENT="1", after the
dependent variable. The default in LOGISTIC is to estimate a model predicting the lowest
value of the dependent variable. Consequently, if | had omitted EVENT='1', the result would
be a logistic model predicting the probability that the dependent variable DEATH is equal to
0. The EVENT='1" option reverses this so that the model predicts the probability that the
dependent variable is equal to 1. (The single quotes around 1 are necessary because PROC
LOGISTIC treats the dependent variable as a character variable rather than as a numeric
variable.)

An equivalent (and popular) way to accomplish this is to use the option
DEATH(DESCENDING), which tells LOGISTIC to model the “higher” value of DEATH
rather than the lower. But what is considered higher rather than lower can depend on other
options that are chosen, so it’s safer to be explicit about which value of the dependent
variable is to be modeled. If you forget the EVENT="1" option, the only consequence is to
change the signs of the coefficients. As long as you realize what you’ve done, you shouldn’t
need to rerun the model.

Results are shown in Output 2.3. The “Model Information” table is pretty
straightforward, except for the “Optimization Technique,” which is reported as Fisher’s
scoring. This is the numerical method used to maximize the likelihood function, and we will see
how it works in Chapter 3. After the “Response Profile” table, we see the message “Probability
modeled is death=1.” If we had not used the EVENT='1' option, this would have said
“death=0, so it’s important to check this so that you correctly interpret the signs of the
coefficients. Next we are told that the convergence criterion was satisfied, which is a good
thing. Iterative methods don’t always converge, and we’ll talk about why that happens and how
to deal with it in Chapter 3.

The next table reports three different “Model Fit Statistics:” AIC, SC, and -2 Log L.
Values of these fit statistics are displayed for two different models, a model with an intercept
but no covariates (predictors), and a model that includes all the specified predictors

(covariates). Usually, we can ignore the INTERCEPT ONLY column. The most fundamental

of the fit statistics, -2 Log L, is simply the maximized value of the logarithm of the likelihood
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function multiplied by —2. We’ll see how this number is obtained in Chapter 3. Higher values
of -2 Log L mean a worse fit to the data. But keep in mind that the overall magnitude of this
statistic is heavily dependent on the number of observations. Furthermore, there is no
absolute standard for what’s a good fit, so one can only use this statistic to compare different
models fit to the same data set.

The problem with -2 Log L is that models with more covariates tend to fit better by
chance alone. The other two fit statistics avoid this problem by penalizing models that have
more covariates. Akaike’s Information Criterion (AIC) is calculated as

AIC =-2logL +2k
where k is the number of parameters (including the intercept). So, in this example, there are
four parameters, which adds 8 to the -2 Log L.

The Schwarz Criterion (SC), also known as the Bayesian Information Criterion
(BIC), gives a more severe penalization for additional parameters:

SC =-2logL+klogn
where 7 is the sample size. In this example, » = 147 and log n = 4.99. So, to get the SC value,
we add 4 times 4.99 = 19.96 to the -2 Log L.

Both of the penalized statistics can be used to compare models with different sets of
covariates. The models being compared do not have to be nested in the sense of one model
being a special case of another. However, these statistics cannot be used to construct a
formal hypothesis test, so the comparison is only informal.

The next table is “Testing Global Null Hypothesis: BETA=0.” Within this table there
are three chi-square statistics with values of 12.206, 11.656, and 10.8211. All three statistics are
testing the same null hypothesis—that all the explanatory variables have coefficients of 0. (In a
linear regression, this hypothesis is usually tested by means of an overall F-test.) The three
degrees of freedom for each statistic correspond to the three coefficients for the independent

variables. In this case, the associated p-values are around .01, so we can reject the null

hypothesis and conclude that at least one of the coefficients is not 0.
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Output 2.3 PROC LOGISTIC Output for Death Penalty Data

: Model Information
Data Set PENALTY

Response Variable death

Number of Response Leveis 2

Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 147
Number of Observations Used 147

Response Profile

Ordered Total
Value death Frequency
11 50

20 97

Probabhility modeled is death=1.

Model Convergence Status
- Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates
AIC 190.491  184.285 '

sC 193.481 196.247

-2Llogl  188.491 176.285

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr> ChiSq
Likelihood Ratio 12.2060 3 0.0067
Score 11.6560 3 0.0087

Wald 10.8211 3 0.0127
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr> ChiSq

Intercept 1 -26516  0.6748 15.4424 <.0001
blackd 1 05952  0.3939 2.2827 0.1308
whitvic 1 02565  0.4002 0.4107 0.5216

1

serious 0.1871 0.0612 9.3342 0.0022

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

blackd 1.813 0.838 3.925
whitvic 1.292 0.590 2.832
serious 1.206 1.069 1.359

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 67.2 Somers'D 0.349
Percent Discordant 32.3 Gamma 0.351
Percent Tied 0.5 Tau-a 0.158
Pairs 4850 ¢ 0.675

Why do we need three chi-square statistics? The first one is the likelihood ratio chi-
square obtained by comparing the log-likelihood for the fitted model with the log-likelihood
for a model with no explanatory variables (intercept only). It is calculated by taking twice the
positive difference in the two log-likelihoods. In fact, LOGISTIC reports —2 Log L for each
of those models, and the chi-square is just the difference between those two numbers. The
score statistic is a function of the first and second derivatives of the log-likelihood function
under the null hypothesis. The Wald statistic is a function of the coefficients and their
covariance matrix. In large samples, there’s no reason to prefer any one of these statistics,
and they will generally be quite close in value. In small samples or samples with extreme
data patterns, there is some evidence that the likelihood ratio chi-square is superior (Jennings
1986), especially when compared with the Wald test.

Next we get to the heart of the matter—the “Analysis of Maximum Likelihood

Estimates.” As with linear regression, we get coefficient estimates, their estimated standard

errors, and test-statistics for the null hypotheses that each coefficient is equal to 0. The test
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2.8

statistics are labeled “Wald Chi-Square.” They are calculated by dividing each coefficient by
its standard error and squaring the result. If we omitted the squaring operation (as many
software packages do), we could call them z statistics, and they would have a standard
normal distribution under the null hypothesis. In that case, the p-values calculated from a
normal table would be exactly the same as the chi-square p-values reported here.

We see that the variable SERIOUS has a highly significant coefficient, while the
coefficient for the variable WHITVIC is clearly not significant. With a p-value of .13,
BLACKD is approaching conventional significance levels but doesn’t quite make it. Now
compare these p-values with those in Output 2.1 for an ordinary linear regression analysis.
While not identical, they are remarkably similar. In this case at least, logistic regression and
OLS regression lead us to exactly the same qualitative conclusions. It’s more difficult to
compare coefficient estimates across the two methods, however, and I won’t attempt that in
this chapter.

The odds ratios in the next table are obtained by simply exponentiating the
coefficients in the first column, that is, calculating exp(f). They are very important in the
interpretation of logistic regression coefficients, and we will discuss that interpretation in the
next section. The 95 percent confidence intervals are obtained as follows. First, we get 95
percent confidence intervals around the original § coefficients in the usual way. That is, we
add and subtract 1.96 standard errors. To get confidence intervals around the odds ratios, we
exponentiate those upper and lower confidence limits.

The last section of Output 2.3, labeled “Association of Predicted Probabilities and
Observed Responses,” is an attempt to measure the explanatory power of the model. I’ll

discuss these statistics in Section 3.7.

Interpreting Coefficients

When logistic regression first became popular, a major complaint by those who resisted its
advance was that the coefficients had no intuitive meaning. Admittedly, they’re not as easy
to interpret as coefficients in the linear probability model. For the linear probability model, a
coefficient of .25 tells you that the predicted probability of the event increases by .25 for
every 1-unit increase in the explanatory variable. By contrast, a logit coefficient of .25 tells

you that the log-odds increases by .25 for every 1-unit increase in the explanatory variable.

But who knows what a .25 increase in the log-odds means?
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The basic problem is that the logistic model assumes a nonlinear relationship
between the probability and the explanatory variables, as shown in Figure 2.1. The change in
the probability for a 1-unit increase in an independent variable varies according to where you
start. Things become much simpler, however, if we think in terms of odds rather than
probabilities.

In Output 2.3, we saw the estimated [ coefficients and their associated statistics in
the “Analysis of Maximum Likelihood Estimates™ table. Except for their sign, they are hard

to interpret. Let’s look instead at the numbers in the “Odds Ratio Estimates” table which, in

this example, are obtained from the parameter estimates by computing eA. (When there are
CLASS variables in the model, the odds ratios may be computed differently, depending on
the parameterization). These might be better described as adjusted odds ratios because they
control for other variables in the model. Recall that BLACKD has a value of 1 for black
defendants and 0 for everyone else. The odds ratio of 1.813 tells us that the predicted odds of
a death sentence for black defendants are 1.813 times the odds for nonblack defendants. In
other words, the odds of a death sentence for black defendants are 81% higher than the odds
for other defendants. This compares with an unadjusted odds ratio of 1.47 found in Table
2.2. Although the adjusted odds ratio for BLACKD is not statistically significant (the 95%
confidence interval includes 1, corresponding to no effect), it is still our best estimate of the
effect of this variable.

For the dummy variable WHITVIC, which indicates white victim, the odds ratio is
1.292. This implies that the predicted odds of death are about 29% higher when the victim is
white compared to the odds when the victim is not white. Of course, the coefficient is far
from statistically significant so we wouldn’t want to put much confidence in this value. What
about the coefficient for the variable SERIOUS, which is statistically significant at the .01
level? Recall that this variable is measured on a 15-point scale. For quantitative variables,
it’s helpful to subtract 1 from the odds ratio and multiply by 100, that is, calculate 100(ef-1).
This tells us the percent change in the odds for each 1-unit increase in the independent
variable. In this case, we find that a 1-unit increase in the SERIOUS scale is associated with
a 21% increase in the predicted odds of a death sentence. Note that if a £ coefficient is
significantly different from 0, then the corresponding odds ratio is significantly different
from 1. There is no need for a separate test for the odds ratio.

Interpretation of coefficients in terms of odds ratios is certainly the easiest way to

approach the logistic model. On the other hand, odds ratios can sometimes be misleading if
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the probabilities are near 1 or 0. Suppose that in a wealthy suburban high school, the
probability of graduation is .99, which corresponds to odds of 99. When financial aid is
increased for needy students, the probability of graduation goes up to .995, which implies
odds of 199. Apparently, the odds of graduation have more than doubled under the new
program even though only half a percent more students are graduating. Is this a meaningful
increase? That depends on many nonstatistical issues.

For those who insist on interpreting logistic models in terms of probabilities, there
are several graphical and tabular methods available (Long 1997). Perhaps the simplest

approach is to make use of equation (2.6):
dp,
a = ﬁ)i (1 - pl )'
xi

This equation says that the change in the probability for a 1-unit increase in x depends on the
logistic regression coefficient for x, as well as on the value of the probability itself. For this
to be practically useful, we need to know what probability we are starting from. If we have to
choose one value, the most natural is the overall proportion of cases that have the event. In
our example, 50 out of 147 defendants got the death penalty, so the overall proportion is .34.
Taking .34 times 1-.34, we get .224. We can multiply each of the coefficients in Output 2.3
by .224, and we get:

BLACKD 133
WHITVIC 057
SERIOUS .046

We can then say that, on average, the probability of a death sentence is .133 higher if the
defendant is black compared with nonblacks, .057 higher if the victim is white compared
with non-white, and .046 higher for a 1-unit increase on the SERIOUS scale. These are
sometimes called “marginal effects,” and they are of considerabie interest in some fields. Of
course, these numbers only give a rough indication of what actually happens for a given
change in the x variable. Note, however, that they are very similar to the coefficients
obtained with the OLS regression in Output 2.1.

Instead of choosing a single value for p;, we can calculate a predicted probability for

each individual, using equation (2.5). Then we can use the derivative formula to generate

marginal effects for each individual. You can easily get them with PROC QLIM (part of the
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SAS/ETS product) using the OUTPUT statement with the MARGINAL option. Here’s the

code:

PROC QLIM DATA=penalty;
ENDOGENOUS death~DISCRETE(DIST=LOGISTIC);
MODEL death = blackd whitvic serious;
OUTPUT 0OUT=a MARGINAL;
PROC PRINT DATA=a(0BS=10);
VAR meff_p2_blackd meff_p2 whitvic meff_p2_serious;
RUN;
QLIM reports coefficients, standard errors, and test statistics (not shown) that are identical to
those produced by PROC LOGISTIC. PROC PRINT produces the table shown in Output 2.4,
for the first 10 observations in the output data set. For each variable, we get the predicted
change in the probability of the death penalty for a 1-unit increase in that variable, for a

particular individual based on that individual’s predicted probability.

Output 2.4 Marginal Effecits Produced by PROC QLIM for the First 10 Cases

Obs Meff_P2_blackd Meff_P2_whitvic Meff_P2_serious

1 0.13068 0.056312 0.041070
2 0.14660 0.063172 0.046073
3 0.08712 0.037541 0.027380
4 0.12615 0.054358 0.039645
5 0.14692 0.063309 0.046173
6 0.10523 0.045347 0.033072
7 0.09613 0.041422 0.030210
8 0.14880 0.064118 0.046763
9 0.12982 0.055942 0.040800
10 0.13682 0.058957 0.042999

2.9 CLASS Variables

As with several other SAS regression procedures, PROC LOGISTIC has a CLASS
statement that allows you to specify that a variable should be treated as categorical
(nominal). When a CLASS variable is included as an explanatory variable in the MODEL

statement, LOGISTIC automatically creates a set of “design variables” to represent the levels

of the CLASS variable. Keep in mind that when a predictor variable is an indicator (dummy)

variable, like BLACKD or WHITVIC which only have values of 0 or 1, there is no need to
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declare it to be a CLASS variable. In fact, putting an indicator variable on the CLASS
statement can produce misleading results. That’s because the CLASS statement might recode
the variable in unexpected ways, as we will see. So the CLASS statement should be reserved
for categorical variables with more than two categories, or for dichotomous variables that
have character values like “yes” and “no.”

Here’s an example with the death-penalty data. The data set contains the variable
CULP, which has the integer values 1 to 5 (5 denotes high culpability and 1 denotes low
culpability, based on a large number of aggravating and mitigating circumstances defined by
statute). Although we could treat this variable as an interval scale, we might prefer to treat it

as a set of categories. To do this, we run the following program:

PROC LOGISTIC DATA=penalty;

CLASS culp /PARAM=REF;

MODEL death(EVENT='1') = blackd whitvic culp ;
RUN;

The CLASS statement declares CULP to be a classification variable. You can have more
than one variable on the CLASS statement. The PARAM=REF option tells LOGISTIC to
create a set of four dummy (indicator) variables, one for each value of CULP except the

highest one (CULP=5). Results are shown in Output 2.5.

Output 2.5 Use of a CLASS Variable in PROC LOGISTIC

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr> ChiSq

blackd 1 7.9141 0.0049
whitvic 1 2.1687 0.1408

culp 4 44.0067 <.0001
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr> ChiSq
Intercept 1 0.5533 0.7031 0.6193 0.4313
blackd 1 17246 0.6131 7.9141 0.0049
whitvic 1 0.8385 0.5694 2.1687 0.1408
culp 1 1 -48670 0.8251 34.7926 <.0001
culp 2 1 -3.0547 0.7754 15.5185 <.0001
culp 3 1 -15294  0.8400 3.3153 0.0686
culp 4 1 -0.3610 0.8857 0.1662 0.6835

Because the variable CULP has five possible values, LOGISTIC has created four
dummy variables, one for each of the values 1 through 4. As in other procedures that have
CLASS variables, the default is to take the highest value as the omitted category. We’ll see
how to change that in a moment. Thus, each of the four coefficients for CULP is a
comparison between that particular value and the highest value. More specifically, each
coefficient can be interpreted as the log-odds of the death penalty for that particular value of
CULP minus the log-odds for CULP=5, controlling for other variables in the model.

When you have a CLASS variable in a model, LOGISTIC provides an additional
table, labeled “Type 3 Analysis of Effects.” For variables that are not CLASS variables, this
table is completely redundant with the standard table below it—the chi-squares and p-values
are exactly the same. For CLASS variables, on the other hand, it gives us something very
useful: a test of the null hypothesis that al/ of the coefficients pertaining to this variable are
0. In other words, it gives us a test of whether CULP has any impact on the probability of the
death penalty. In this case, we clearly have strong evidence that CULP makes a difference.
What’s particularly attractive about this test is that it is invariant to the choice of the omitted
category, or even to the choice among very different methods for constructing design
variables (which I’ll discuss in a moment).

The pattern for the four coefficients is just what one might expect. Defendants with
CULP=1 are much less likely to get the death sentence than those with CULP=5. Each
increase of CULP is associated with an increase in the probability of a death sentence. Notice

also that when CULP is included in the model, the coefficient for BLACKD (black

defendant) is much larger than it was in Output 2.3 and is now statistically significant.
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If you don’t like the default reference category (5 in this example), how do you
change it? If you want it to be the lowest value of CULP rather than the highest value, just

use
CLASS culp / PARAM=REF DESCENDING;
If you want it to be some particular value, say 3, use

CLASS culp(REF='3') / PARAM=REF;

Suppose you want to compare two categories of a CLASS variable, such as CULP=2
and CULP=3. You could always accomplish this by rerunning the model, and making one of
those values the reference category. But it’s usually easier to use a TEST statement or a
CONTRAST statement, and you can have as many of those as you want. The following two
statements test the same null hypothesis, that there is no difference in the coefficients for

CULP=2 and CULP=3:

CONTRAST 'Culp2 vs. Culp3' culp 0 1 -1 0;

TEST culp2=culp3;
The CONTRAST statement requires a label, which can be any text enclosed by quotes. This
is annoying if you only have a single CONTRAST, but very useful if you have more than one
because the label helps you distinguish the different tests in the output. Here’s how the
CONTRAST statement works: we know that CULP has four coefficients. The code “CULP 0
1 -1 0” tells SAS to multiply the first coefficient by 0, the second coefficient by 1, the third
coefficient by -1, and the fourth coefficient by 0, add up the results, and test whether the sum
is equal to 0. Of course, this is equivalent to testing whether there is a difference between the
second and third coefficients.

The TEST statement is a little more straightforward. To refer to a coefficient, you
Jjust append the value of the variable to the variable name itself. A TEST statement may
optionally have a label, but the label comes before TEST and cannot have any spaces. Thus,

we could have written

Culp2_vs_Culp3: TEST culp2=culp3;
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The output from the CONTRAST and TEST statements is nearly identical (see Output 2.6).
In this case, the difference in the log-odds of a death penalty for those in category 2 vs. those
in category 3 is not quite significant at the .05 level. Note that this difference (and its

statistical significance) is invariant to the choice of the reference category.

Output 2.6 Results from TEST and CONTRAST Statements

Contrast Test Results

Wald
Contrast DF Chi-Square Pr> ChiSq
Culp2 vs. Culp3 1 3.81562 0.0508

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr> ChiSq
Test 1 3.8152 1 0.0508

What happens if you leave off the PARAM=REF option? Unfortunately, the default
for the CLASS statement in PROC LOGISTIC is quite different from the default in many
other regression procedures, such as GLM, GENMOD, PHREG, or LIFEREG. This could
lead some analysts to misinterpret the results. In those procedures, the default is to produce a
set of dummy variables, much like we did using the PARAM=REF option. The default in
LOGISTIC, on the other hand, is to produce design variables that are sometimes described as
analysis of variance coding or effect coding.

Output 2.7 shows what you get when you simply write CLASS CULP without using
the PARAM option. The “Class Level Information” table tells us how the four design
variables are constructed. Clearly these are not indicator variables, because each one can
takes on values of 1, 0, or -1. The first design variable has a valug¢ of 1 when CULP=1, a
value of -1 when CULP=5, and values of 0 for the other values of CULP. The other three are

constructed in a similar fashion, except that the CULP value that is assigned a 1 changes for

each design variable.
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Output 2.7 Results from CLASS Statement Using Default Design Variables

Class Level Information

Design
Class Value Variables
culp 1 1 0 0 O
2 o1 00
3 00 10
4 0 0 0 1
5 41 -1
Type 3 Analysls of Effects
Wald
Effect DF Chl-Square Pr> ChiSq _
blackd 1 7.9141 0.0049
whitvic 1 2.1687 0.1408

culp 4 44.0067 <.0001

Analysls of Maximum Llkelihood Estimates

Standard Walid
Parameter DF Estimate Error Chi-Square Pr> ChiSq
Intercept 1 -1.4092 0.6066 5.3972 0.0202
blackd 1 1.7246 0.6131 7.9141 0.0049
whitvic 1 08385 0.5694 2.1687 0.1408
culp 1 1 -2.9046  0.5007 33.6535 <.0001
culp 2 1 -1.0923 04645 5.5304 0.0187
culp 3 1 04330 0.5292 0.6696 0.4132
culp 4 1 16014 0.6026 7.0625 0.0079
Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

blackd 5.610 1.687 18.657

whitvic 2.313 0.758 7.061

culp 1vsb 0.008 0.002 0.039
culp 2vsb 0.047 0.010 0.215
culp 3vs$ 0.217 0.042 1.124 |
culp 4vs§ 0.697 0.123 3.954 1
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As can be seen in the “Type 3 Analysis of Effects” table in Output 2.7, this
alternative coding has no effect on the overall test for CULP. And skipping down to the
“Qdds Ratio Effects” table, it also has no effect here either. Just as when we use
PARAM=REF, each odds ratio compares a particular category with category 5. But there are
certainly major changes in the CULP coefficients reported in the “Analysis of Maximum
Likelihood Estimates” table, along with their standard errors and p-values. What’s important
to understand is that these coefficients are not comparisons between each of the first four
values of CULP and value 5. Rather they are comparisons between each category of CULP
and the overall average (roughly speaking) of the log-odds of getting the death penalty,
adjusting for other variables in the model. Thus, if you are in category 1 of CULP, your log-
odds of getting the death penalty is 2.9046 below average. If you are in category 4, your log-
odds is 1.6014 above average.

What about category 5? How does it differ from the average? To get that value, you
must add together the coefficients for values 1 through 4 and then change the sign. That
ensures that all five coefficients sum to zero. You could do that by hand calculation, but it’s

a lot easier to let SAS do it with the ESTIMATE statement:
ESTIMATE 'coeff for 5' culp -1 -1 -1 -1;

This says to take the four coefficients for CULP, multiply each by -1, and then add them
together. Results are shown in Output 2.8. We see that those with value 5 of CULP have a
death penalty log-odds that is 1.9624 higher than average. We also get a standard error and a
z-test of the null hypothesis that this effect is 0.

Ouiput 2.8 Results from ESTIMATE Statement

Estimate

Standard
Label Estimate Error z Value Pr> |z|

coefffor5: 19624 0.5264.  3.73 0.0002

Some people like this approach to creating design variables, but I’m not a fan. I
prefer comparisons with an explicit reference category. PROC LOGISTIC also offers several

other methods for creating design variables, including ordinal, polynomial, and

orthogonalized versions of all the methods.
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2.10 Multiplicative Terms in the MODEL Statement

Regression analysts often want to build models that have interactions in which the
effect of one variable depends on the level of another variable. The most popular way of
doing this is to include a new explanatory variable in the model, one that is the product of the
two original variables. With PROC LOGISTIC, rather than creating a new variable in a
DATA step, you can specify the product directly in the MODEL statement. For example,
some criminologists have argued that black defendants who kill white victims may be
especially likely to receive a death sentence. We can test that hypothesis for the New Jersey
data with this program:

PROC LOGISTIC DATA=penalty;
MODEL death(EVENT='1') = blackd whitvic culp blackd*whitvic;

RUN;
This produces the table in Output 2.9.
Output 2.9 Multiplicative Variables in PROC LOGISTIC

Analysis of Maximum Likelihood Estimates

Standard Wald:
Parameter DF Estimate Error Chi-Square Pr> ChiSq
Intercept 1 -54042 1.1626 21.6066 <.0001
blackd 1 1.8720 1.0463 3.2013 0.0736
whitvic 1 10725 0.9877 1.1790 0.2776
culp 1 12703  0.1967 41.6883 <.0001
blackd*whitvic 1 -0.3272  1.1781 0.0771 0.7812

With a p-value of .78, the product term is clearly not significant and can be excluded from
the model. The MODEL statement also has a short-hand notation that allows you specify

both the interaction and the two main effects:

MODEL death(EVENT='1') = culp blackd|whitvic;

The product syntax in LOGISTIC also makes it easy to construct polynomial functions. For

example, to estimate a cubic equation you can specify a model of the form

MODEL y = X X*X X*X*X;
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Or, equivalently

MODEL y = x|x|x;

This fits the model log(p/(1-p))=a+ Px+ ﬂ2x2 + ﬂ;xa-
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