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Appendix A

Probability

Here are some miscellaneous facts from probability theory that are used in
the text.

A.1 Inequalities

Proposition A.1.1 (Markov’s inequality). For any random number X >

0 and any a > 0,
P(X >a) < a 'EX.

Proof. First, note that P(X > a) = E1(X > a) where 1(A) in general denotes
the indicator of the event A. Hence by the linearity of expectation,

aP(X >a) = aE1(X >a) = Eal(X > a).
Next, the inequalities
al(X >a) < XI(X >a) < X

which are valid for any realization of X, and the monotonicity of the expec-
tation imply that
Eal(X >a) < EX.

Hence aP(X > a) < EX, and the claim follows. O

Proposition A.1.2 (Chebyshev’s inequality). For any random number X with
a finite mean p =EX and any a > 0,

P(|X —pu| >a) < a ?Var(X).
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Proof. By applying Markov’s inequality for Y = (X — u)?, we find that

P(X —pul > a) = P(X —p)* > a?)

A
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|

= a2 Var(X).
[
The following inequality is due to the Finnish-born Wassily Hoeffding.

Proposition A.1.3. Let S, = > | X; where the summands are independent
and bounded by a; < X; < b;. Then for any t > 0,

2t2

P(S, > ES, +t) < e Titi-e?,

2t2

P(S, <ES, —t) < e Ziltima)?

and
22

P(|S, —ES,| > t) < 2e Eili—e?,

Proof. A well-written proof of the first inequality, based on an extremality
property related to convex stochastic orders, is available in the original re-
search article Hoeffding [5]. The second inequality follows by applying the
first inequality to S, = —S, and the third inequality follows from the first
two by the union bound. O

A.2 Weak convergence of probability mea-
sures

Let w, p1, pa, ... be probability distributions on R. We say that u, — p
weaklyif [ ¢(x)pn(dx) — [ ¢(x)p(dz) for every bounded continuous function
¢ : R — R. We say that u, — p weakly and with k-th moments, if in
addition p,, and g have finite k-th moments and [ |2 |* o (d) — i |2|* u(da).
The sequence (p,) is called uniformly integrable if sup, [ |z|p,(dz)1(|z| >
K) - 0as K — oo. Let X, X1, Xs,... be real-valued random variables.
We say that X,, — X weakly (resp. with weakly with k-th moments) if the
corresponding probability distributions converge weakly (resp. weakly with
k-th moments). We say that (X,,) is uniformly integrable if the collection of
corresponding probability distributions is uniformly integrable.

Lemma A.2.1. Let X,, and X be random numbers such that X,, — X weakly
with 1st moments. Then the sequence (X,,) is uniformly integrable.
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Proof. Given ¢ > 0, by Lebesgue’s dominated convergence we may choose
K > 0 such that EX1(X > K) < ¢/3. Then let ¢ be a continuous bounded
function such that ¢ (z) = = for z < K and ¢x = 0 for z > K + 1. Then

zl(x < K) < ¢k(r) < zl(x < K +1),
so that

EX,1(X, > K +1)

EX, -EX,1(X, < K+1)

EX, — Eox(X,)

= EX, — Eéx(X) +Epx(X) — Eox(X,)

EX, —EX1(X < K) +E¢x(X) — Eor(X,)
EX1(X > K)+EX, — EX + E¢x(X) — E¢x(X,)
€/3 + [EX, — EX| + |Epx(X,) — Eox(X)|.

IN

IN

IN

Then we may choose ng so large that |[EX,, — EX| < ¢/3 and |[E¢x (X,,) — Epx(X)| <
¢/3 for all n > ny. Hence EX,1(X,, > K + 1) < ¢ for all n > ny. Further-
more, for every 1 < m < ng we may choose, again by Lebesgue’s domi-
nated convergence, K,, such that EX,,1(X,, > K,,) < e. Now if we choose
L=max{K +1,K,,...,K,,}, it follows that sup, EX,1(X,, > L) <e. O
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