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Aalto University

September 13, 2018



Contents

1 Random and nonrandom graphs 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Graph statistics . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Latent position graph models . . . . . . . . . . . . . . 5

2 Connectivity 7
2.1 Connectivity probability . . . . . . . . . . . . . . . . . . . . . 7
2.2 Number of isolated nodes . . . . . . . . . . . . . . . . . . . . . 7
2.3 Connectivity threshold . . . . . . . . . . . . . . . . . . . . . . 10

A Probability 15
A.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.2 Weak convergence of probability measures . . . . . . . . . . . 16

1



Appendix A

Probability

Here are some miscellaneous facts from probability theory that are used in
the text.

A.1 Inequalities

Proposition A.1.1 (Markov’s inequality). For any random number X ≥
0 and any a > 0,

P(X ≥ a) ≤ a−1EX.

Proof. First, note that P(X ≥ a) = E1(X ≥ a) where 1(A) in general denotes
the indicator of the event A. Hence by the linearity of expectation,

aP(X ≥ a) = aE1(X ≥ a) = Ea1(X ≥ a).

Next, the inequalities

a1(X ≥ a) ≤ X1(X ≥ a) ≤ X

which are valid for any realization of X, and the monotonicity of the expec-
tation imply that

Ea1(X ≥ a) ≤ EX.

Hence aP(X ≥ a) ≤ EX, and the claim follows.

Proposition A.1.2 (Chebyshev’s inequality). For any random number X with
a finite mean µ = EX and any a > 0,

P(|X − µ| ≥ a) ≤ a−2 Var(X).
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Proof. By applying Markov’s inequality for Y = (X − µ)2, we find that

P(|X − µ| ≥ a) = P((X − µ)2 ≥ a2)

≤ (a2)−1E(X − µ)2 = a−2 Var(X).

The following inequality is due to the Finnish-born Wassily Hoeffding.

Proposition A.1.3. Let Sn =
∑n

i=1Xi where the summands are independent
and bounded by ai ≤ Xi ≤ bi. Then for any t > 0,

P(Sn ≥ ESn + t) ≤ e
− 2t2∑

i(bi−ai)
2 ,

P(Sn ≤ ESn − t) ≤ e
− 2t2∑

i(bi−ai)
2 ,

and

P(|Sn − ESn| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)
2 .

Proof. A well-written proof of the first inequality, based on an extremality
property related to convex stochastic orders, is available in the original re-
search article Hoeffding [5]. The second inequality follows by applying the
first inequality to S̃n = −Sn and the third inequality follows from the first
two by the union bound.

A.2 Weak convergence of probability mea-

sures

Let µ, µ1, µ2, . . . be probability distributions on R. We say that µn → µ
weakly if

∫
φ(x)µn(dx)→

∫
φ(x)µ(dx) for every bounded continuous function

φ : R → R. We say that µn → µ weakly and with k-th moments, if in
addition µn and µ have finite k-th moments and

∫
|x|kµn(dx)→

∫
|x|kµ(dx).

The sequence (µn) is called uniformly integrable if supn

∫
|x|µn(dx)1(|x| >

K) → 0 as K → ∞. Let X,X1, X2, . . . be real-valued random variables.
We say that Xn → X weakly (resp. with weakly with k-th moments) if the
corresponding probability distributions converge weakly (resp. weakly with
k-th moments). We say that (Xn) is uniformly integrable if the collection of
corresponding probability distributions is uniformly integrable.

Lemma A.2.1. Let Xn and X be random numbers such that Xn → X weakly
with 1st moments. Then the sequence (Xn) is uniformly integrable.
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Proof. Given ε > 0, by Lebesgue’s dominated convergence we may choose
K > 0 such that EX1(X > K) ≤ ε/3. Then let φK be a continuous bounded
function such that φK(x) = x for x ≤ K and φK = 0 for x ≥ K + 1. Then

x1(x ≤ K) ≤ φK(x) ≤ x1(x ≤ K + 1),

so that

EXn1(Xn > K + 1) = EXn − EXn1(Xn ≤ K + 1)

≤ EXn − EφK(Xn)

= EXn − EφK(X) + EφK(X)− EφK(Xn)

≤ EXn − EX1(X ≤ K) + EφK(X)− EφK(Xn)

= EX1(X > K) + EXn − EX + EφK(X)− EφK(Xn)

≤ ε/3 + |EXn − EX|+ |EφK(Xn)− EφK(X)|.

Then we may choose n0 so large that |EXn − EX| ≤ ε/3 and |EφK(Xn)− EφK(X)| ≤
ε/3 for all n > n0. Hence EXn1(Xn > K + 1) ≤ ε for all n > n0. Further-
more, for every 1 ≤ m ≤ n0 we may choose, again by Lebesgue’s domi-
nated convergence, Km such that EXm1(Xm > Km) ≤ ε. Now if we choose
L = max{K + 1, K1, . . . , Kn0}, it follows that supn EXn1(Xn > L) ≤ ε.
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