
ELEC-E8715 Design and Analysis of MEMS

- Lecture1 7.9.2020
 - Introduction to the course content and requirements - Prof. Mervi Paulasto-Kröckel
 - Introduction to MEMS devices and technologies - Dr. Ville Kaajakari, Murata Electronics

Ref. Till, Paulasto-Kröckel et al, Handbook of Silicon Based MEMS Materials and Technologies, 2020

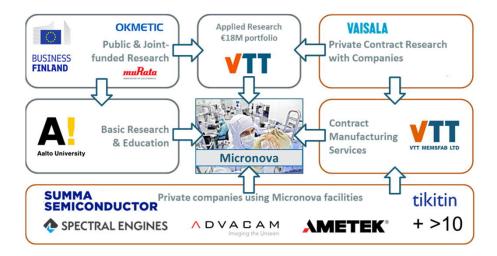
ELEC-E8715 Design and Analysis of MEMS

- 5 credits master level course, I-II period
- Assessment 0 5:
 - Max 300 points total, 180 points from assignments, 120 points from exam
 - Both assignments and exam need to be passed
- Methods: 14 lectures, 9 assignments, final exam
 - Organized online via teams
 - Lectures Mondays 14:15 15:45
 - Assignment support Fridays 14:15 15:45 (note! not organized every Friday follow the detailed schedule)
 - Exam 11.12. 14:00 16:00
- Teachers from Aalto, VTT, Murata, Okmetic and Vaisala
 - Course organization by prof. Mervi Paulasto-Kröckel (<u>mervi.paulasto@aalto.fi</u>) and course assistant Dr. Nikhilendu Tiwary (<u>nikhilendu.tiwary@aalto.fi</u>)
- Materials:
 - Lecture notes, other material provided by the lecturers
 - Recommended reference material:
 - Handbook of Silicon Based MEMS Materials and Technologies, 3rd Edition, 2020
 http://libproxy.aalto.fi/login?url=http://www.sciencedirect.com/science/book/978-0-12-817786-0
 - Practical MEMS, Ville Kaajakari, 2009: copies available in the learning center

Learning outcomes

After the course the student will

- understand the physical operating principals of MEMS
- understand fundamentally important aspects of MEMS, impact of scaling, mechanical and thermal behavior of miniaturized structures and materials
- understand the design principals for inertial sensors, piezoactuated ultrasonic transducers and optical MEMS
- be familiar with main tools to characterize MEMS devices
- be able to utilize finite element analysis for simplified structures
- be able to identify and analyse key impact factors from manufacturing and design on device performance
- gain insight into future sensor and actuator development needs on accuracy, security, new materials and integration for high performance applications



Why this course?

ELEC-E8715 is part of curricula in:

- ELEC: AEE/Electronic and Digital Systems https://into.aalto.fi/display/enaee/Electronic+and- https://into.aalto.fi/display/enaee/Electronic+and- https://into.aalto.fi/display/enaee/Electronic+and-
- CHEM: Functional Materials
 https://into.aalto.fi/display/encbme/Functional+M
 aterials+2020-2022
- Erasmus Mundus Joint International Master in Smart Systems Integrated Solutions (2021 – 2026)

Micronova facilities and ecosystem strong on MEMS

Schedule

Date	Lecture	Responsible	Main content	Date	Related exercise / HW helpdesk	Assessment / points	Deadline
7.9.	Introduction lecture	Aalto/Murata	Course structure, introduction to MEMS and its applications, main principles	11.9.	Comparison traditional sensor vs MEMS sensor; microphone	0 - 15	25.9.
14.9.	Silicon for MEMS	Okmetic	Si properties, SOI/C-SOI manufacturing, critical parameters for MEMS		N/A		
21.9.	Scaling and mechanics of materials	Aalto	Mechanics of materials for isotropic materials, beam bending, Q factor, stiction	25.9.	Measurement of a mechanical resonator, calculations concerning the Q value	0 - 10	9.10.
28.9.	Mechanics of materials: thin films	Aalto	Mechanics of materials, anisotropic materials and thin films, grain size	2.10.	FEM analysis of a multilayer structure, Comsol		
5.10.	Residual stresses: thin flms and bonded structures	Aalto	Stresses in thin films and elements, characterization methods	9.10.	FEM analysis of a multilayer structure, Comsol, cont.	0 - 45	30.10.
12.10.	Thermal effects in microscale	Aalto	Thermal properties MEMS materials, phase change actuators, nebulizers	16.10.	MEMS IR source	0 - 10	30.10.
19.10.	Inertial sensors - accelerometers	Murata	Operation principals, capacitive sensing, resonance frequency, electrical and mechanical noise	23.10.	Miniproject on accelerometer design Calculations to support miniproject	0 - 30	13.11.
26.10.	Inertial sensors continued	Murata	Electronics, system analysis	30.10.	Lab measurement on video and results, CV curve of moving mass and related analysis	0 - 30	27.11.
2.11.	Inertial sensors - gyroscopes	Murata	Operation principle, actuation, detection		N/A		
9.11.	PiezoMEMS	VTT	Introduction to piezoelectric transduction and its applications (BAW, FBAR)	13.11.	Constitutive relations of piezoelectricity, piezoelectric force generation and sensing.		
16.11.	Piezoactuated ultrasound transducers	VTT	Piezoelectric thin film ultrasound transducer (PMUT) - principle and structure	20.11.	Constitutive relations of piezoelectricity, piezoelectric force gen. and sensing, cont.	0 - 15	4.12.
23.11.	RF-MEMS	Aalto	RF-MEMS and casimir effect in NEMS	27.11.	Capactive coupling calculations	0 - 15	11.12.
30.11.	Optical MEMS	Vaisala	Fabry-Perot interferometer	4.12.	FPI opto-electro mechanics	0 - 10	11.12.
7.12.	Optical MEMS	VTT	Spectroscopic measurements	11.12.	Exam	0 - 120	
						Max 300	

Requirements

- Assessment:
 - Assignments max. 180 points
 - Exam max. 120 points
 - Both assignments and exam need to be accepted (at least grade 1)
 - Extra 5 points available for returning Aalto Webropol course feedback
 - Total max. 300 points (305 with feedback)
- Grades:
 - 0 − 5
- No attendance requirements

Methods

- Online lectures via teams/zoom
- Homework/assignments
 - Calculations or short reports
 - Comsol modeling
 - On-demand video + data analysis
- Lecture room exam with all reference material available

COMSOL installation instructions

- Establishing a remote connection (VPN) to Aalto network: https://www.aalto.fi/en/services/establishing-a-remote-connection-vpn-to-an-aalto-network
 - Step 1: Installation of client software Cisco AnyConnect VPN Client: https://download.aalto.fi/
 - Step 2: Connecting to Aalto network After installing client software, enter the connection address: **vpn1.aalto.fi** or **vpn2.aalto.fi** (or **vpn.aalto.fi**). Then login with your Aalto credentials.
- Installing COMSOL on personal computers:
 - ➤ Go to: https://download.aalto.fi/index-en.html

- ➤ Download the file and run the installer (marked in green).
- ➤ Use the passcode provided for the version (marked in blue).
- > Stick to the default recommendations and complete the installation.

COMSOL installation instructions

 If you don't want to install COMSOL on your personal computer, you can use classroom computers:

https://wiki	Comsol	Classrooms (all except ARTS and BIZ specific) - Windows	<u>+list</u>
		ELE Classroom Laptops	
		PHYS OppLab	
		VDI Windows 10 3D	

- Or, use servers brute.aalto.fi/force.aalto.fi: https://www.aalto.fi/en/services/servers-for-light-duty-calculation
 - For instructions: https://linux.aalto.fi/instructions/#using-your-own-computer
 - Install VcXsrv (Windows X server) and PuTTY (SSH Client)
 - After installation:
 - 1. Open XLaunch
 - · Click 'Next' on all steps with default settings
 - 2. Open PuTTY SSH
 - Go to 'SSH' under category:
 - click on 'X11' and tick 'Enable X11 forwarding'
 - Go to 'Session':
 - Type 'brute.aalto.fi' or 'force.aalto.fi' in host name
 - · Click 'open'
 - Login with Aalto credentials
 - In the command prompt, type 'comsol'