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Javier Gómez Bolaños

1 Calibration of the measuring chain

In the exercise, a calibrator was used to measure the sensitivity of the mea-
surement microphone. The calibration signal provides 94 dB SPL at 1 kHz
thus if we divide the measured signals by the rms value of the calibrator
signal we obtain a sensitivity of 1V/Pascal. Therefore,

x(n)

Vcal
= y(n) (Pascal) (1)

where x(n) is whatever signal coming from the microphone in Volts ; Vcal
is the rms value of the calibration signal; and y(n) the calibrated signal in
Pascal.

2 Pressure values from impulse responses

2.1 The theory behind (in discrete domain1)

For any signal, it holds that

s(n)
⊗

s−1(n) = δ(n) (2)

where s(n) is the original signal with frequency response S(k); s−1 is a signal
with frequency response S−1(k) = 1/S(k);

⊗
is the convolution operator;

1Notice that the indexes in this text starts from 1 and not from 0 as in the theoretical
equations. This is because the Matlab effect has been taken into account.
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and δ(n) is the Kronecker delta (Dirac delta in discrete time). It also holds
that

g · s(n)
⊗

s−1(n) = g · δ(n) (3)

where g is a gain factor applied to s(n).

Let’s assume that s(n) has been modified by a linear temporally invariant
(LTI) system (like a loudspeaker) and that our measuring channel have been
already calibrated

y(n) = g · s(n)
⊗

h(n) (4)

where h(n) is the impulse response of the LTI system. Furthermore, h(n)
can be decomposed into

h(n) = S · hN(n) (5)

where S is a gain factor that belong to the LTI system; and hN(n) is the
energy normalized impulse response of the system:

∞∑
n=1

h2
N(n) = 1 (6)

Now, let’s rewrite Eq.(2) adding all parameters

g · s(n)
⊗

hN(n) · S
⊗

s−1(n) = y(n)
⊗

s−1(n) = g · S · hN(n) (7)

In frequency domain, Eq.(7) is written as

g · S(k) ·HN(k) · S · S−1(k) = Y (k) · S−1(k) = g · S ·HN(k) (8)

2.2 Calculating the pressure

For the case of a loudspeaker, the result of Eq.(7) and Eq.(8) is the measured
impulse response thus we can assume that g is the rms voltage at the entrance
of the loudspeaker and S is the sensitivity of the loudspeaker measured at
the receiver point (thus attenuated by distance). Therefore, the product
g ·S represents the rms pressure value in Pascal and |HN(k)| the variations
around the rms pressure at each frequency.
Notice that this is true only when the sensitivity of the measurement channel
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is equal to the inverse of the rms value of s−1,Vs−1 . For instance, if the
sensitivity of the measurement channel is 2 V/Pascal then, Vs−1 should be
0.5 Vrms.
For the case of the measurement exercise, Vs−1 = 1 Vrms so the full process
is written then as

h(n) =
w(n)

Vcal
(9)

where w(n) is the measured impulse response before calibration and h(n)
is the measured response after calibration. Doing the Fourier transform of
h(n),

H(k) = FFT {h(n)} (10)

we can calculate the pressure at the measuring point for a specific frequency
as

Lp(k) = 20 · log10

(
|H(k)|
pref

)
(11)

Since k is the frequency beam of the FFT, we can also calculate the pressure
in a band using

Lpband
= 20 · log10


√∑k2

k=k1
|H(k)|2

∆k

pref

 ; ∆k = k2 − k1 + 1 (12)

or using Parseval’s theorem we can arrive to the same result in time-domain
with

Lpband
= 20 · log10


√∑N

n=1 h
2
band(n)

pref

 (13)

where hband(n) is the impulse response h(n) bandpass filtered at the frequen-
cies of interest.

3


