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Today

• Introduction to planning in sequential problems

• Overview of course contents
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Let’s talk about planning

• Name planning problems from your daily life

• Design a plan to solve your problem

• What is a plan?
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Planning and surprises

• Does your plan allow for surprises or unknowns?
– Raise of hands

• Discuss in groups (10 min): How would you modify the 
plans to allow surprises?

• Plan can be conditional on current observation

Policy from observation to action



 

Information needs

• In groups: Are there cases when current observation is 
not sufficient to make decisions? If yes, when does that 
happen?



 

Information needs

• In groups: Are there cases when current observation is 
not sufficient to make decisions? If yes, when does that 
happen?

• Sometimes history of observations is needed.
• Information used for decision can be abstracted as state. 

• Discussion: Give examples of state for different 
problems.
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• Let’s consider that everything can be observed at time 
of each decision. 

• Plan is then a policy function from state to action.
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Plan as policy

• Let’s consider that everything can be observed at time 
of each decision. 

• Plan is then a policy function from state to action.

• In groups: Can all plans (purposeful decision strategies) 
be represented like this?
– Many can, but sometimes it’s useful to be random (e.g. games)



 

Success

• How can you define success in planning?
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Success

• How can you define success in planning?

• Reaching a particular state
• Making particular state transitions

• Are all plans that reach a goal equally good?

• Give an example of a good and a bad plan



 

Objective(s)

• How can you formulate goal(s) in planning to take into 
account plan quality?
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Objective(s)

• How can you formulate goal(s) in planning to take into 
account plan quality?

• Immediate reward vs cumulative return

• Design rewards for your own problem.



 

Evaluating policy quality

• Assuming that
– we have a policy,
– know the associated reward function, 
– the system can be tested,

how can the quality of the policy be evaluated?



 

Planning as optimization

• Planning (sequential decision making) can be 
understood as optimization of a policy with respect to 
expected return.



 

Planning as optimization

• Planning (sequential decision making) can be 
understood as optimization of a policy with respect to 
expected return.

• To automatically solve such problems, which information 
is needed? Where can the information come from?



 

Information for planning

• Effects of actions in different states
– Which state I may end up to if I do X now?

• Rewards of state-action pairs
– What’s the reward if I now do X?



 

Reinforcement learning problem

• Determine policy 

such that expected cumulative return is maximized

u=π(x )

π
∗
=argmaxπE [R ]

R=∑t
rt



 

Why is RL hard?

• Effects of actions (state dynamics) 
– need to be learned
– are often stochastic

• Rewards 
– (may) need to be learned
– may be delayed (“sparse rewards”)
– may be difficult to choose/formulate

• Trade-off between learning (exploration) and maximizing 
rewards (exploitation)



 

Summary so far

• Can you
– explain what is reinforcement learning
– define a problem as a reinforcement learning problem
– explain why reinforcement learning is difficult



 

Setting

action u

environment state

observation z

agent state x

reward  r

Task
Choose a sequence of
actions that maximizes
cumulative reward.



 

Markov decision process

action u

environment state

observation z

agent state 

reward  r

MDP
Environment observable

Defined by dynamics

And reward function

Solution e.g.

Represented as policy

x A

x E

o= xE= x A

P ( x t+1∣x t , ut)

r t=r (x t+1 , x t)

u1,… ,T
∗

=maxu1,… ,u T∑t=1

T
rt

u=π( x A)

Can you explain what does Markovianity mean?

Can you see parallels with control?



 

Reinforcement learning

action u

environment state

observation z

agent state 

reward  r

RL
MDP with unknown 
Markovian dynamics

Unknown reward 
function

Solution similar, e.g.

Learning must explore
policies

x A

x E

P ( x t+1∣x t , ut)

r t=r (x t+1 , x t)

u1,… ,T
∗

=maxu1,… ,u T∑t=1

T
rt

How does this then relate to the control case?



 

Partially observable MDP (POMDP)

action u

environment state

observation z

agent state 

reward  r

POMDP
Environment not directly
observable

Defined by dynamics

Reward function

Observation model

Solution similar, eg.

x A

x E

P ( x t+1
E

∣x t
E , ut)

r t=r (x t+1 , x t)

u1,… ,T
∗

=maxu1,… ,u T
E [∑t=1

T
rt ]

P (z t∣x t
E , u t)

How does this relate to the control case?



 

Course outline

• Optimal decision making with known dynamics

• Markov decision processes

• Reinforcement learning

• Partially observable Markov decision processes



 

Next time: Discrete planning in 
deterministic worlds
• Read LaValle, “Planning Algorithms”, Sections 2–2.2.2, 

2.3–2.3.2 (~20 pages)

• Read Platt, “Introduction to linear quadratic regulation”, 
Sec. 1-3 (~5 pages)

• Complete Quiz 1
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