

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

Ville Kyrki 1.10.2019

Today

• Markov decision processes

Learning goals

- Understand MDPs and related concepts.
- Understand value functions.
- Be able to implement value iteration.

Let's build this from its building blocks.

Markov property

- "Future is independent of past given the present"
- State sequence S is Markov iff <wording the "if and only if" $P(S_{t+1}|S_t) = P(S_{t+1}|S_1, \ldots, S_t)$
- State captures all history.
- Once state is known, history may be thrown away.

Markov process

- Markov process is a memoryless random process, i.e. random state sequence *S* with the Markov property.
- Defined as *(X,T)*
	- *X:* set of states
	- *T*: X *x X → [0,1]* state transition function
		- $T_t(x, x') = P(x_{t+1} = x' | x_t = x)$
		- *P* can be represented as transition probability matrix
- State sequences called *episodes*

Aalto Universitv **School of Electrical** Enaineerina

How to calculate probability of a particular episode? Starting from A, what is the probability of A,B,C?

Markov reward process

- Markov reward process = Markov process with rewards
- Defined by (X, T, r, y)
	- *X, T* :as above
	- $r: X \rightarrow \mathcal{R}$ reward function
	- γ [0,1]: discount factor
- Accumulated rewards in finite (*H* steps) or infinite horizon *H*

$$
\sum_{t=0}^{H} \gamma^t r_t \qquad \sum_{t=0}^{\infty} \gamma^t r_t
$$

Still no "decision"!

• *Return R*: accumulated rewards from time t

Aalto Universitv **School of Electrical** Enaineerina

$$
R_{t} = \sum_{k=0}^{H} \gamma^{k} r_{t+k+1}
$$

Why discount? Return of (A,B,C) , $\gamma=0.9$?

State value function for MRPs

• State value function *V(x)* is expected cumulative rewards starting from state *x*

 $V(x) = E[R_t | x_t = x]$

• Value function can be defined by Bellman equation $V(x) = E[R_t | x_t = x]$ $V(x) = E[r_{t+1} + \gamma V(x_{t+1})|x_t = x]$

What is the value function for $y=0$?

Markov decision process (MDP)

- Markov decision process defined by (X*, U, T, R,* g *)*
	- $-$ *X*, γ : as above
	- *U:* set of actions (inputs)

-
$$
T: X \times U \times X \rightarrow [0, 1]
$$

\n $T_t(x, u, x') = P(x_{t+1} = x' | x_t = x, u_t = u)$

- R:
$$
X \times U \times X \rightarrow \mathcal{R}
$$
 reward function
\n $r_t(x, u, x') = r(x_{t+1} = x', x_t = x, u_t = u)$

• Goal: Find policy $\pi(x)$ that maximizes cumulative rewards.

Aalto Universitv **School of Electrical Engineering**

Grid world example!

Policy

- Deterministic policy $\pi(X):X\to U$ is mapping from states to actions.
- Stochastic policy $\pi(u|x)$ *:* $X, U \rightarrow [0,1]$ is a distribution over actions given states.
- Optimal policy $\pi^*(x)$ is a policy that is better or equal than any other policy (in terms of cumulative rewards)
	- There always exists a deterministic optimal policy for a MDP.

What is grid world optimal policy!

MDP value function

- *State-value function* of an MDP is expected return starting from state *s* and following policy π . $V_{\pi}(x) = E_{\pi}[R_{t}|x_{t} = x]$
- Can be decomposed into immediate and future components using Bellman expectation equation $V_{\pi}(x) = E_{\pi}[r_t + \gamma V_{\pi}(x_{t+1})|x_t = x]$ $V_{\pi}(x) = \sum_{x'} T(x, \pi(x), x') r(x, \pi(x), x')$ $+\gamma \sum_{x'} T(x, \pi(x), x') V_{\pi}(x')$

X

What is value function here?

Action-value function

• *Action-value function Q* is expected return starting from state *s*, taking action a , and then following policy π .

$$
Q_{\pi}(x, u) = E_{\pi}[R_t | x_t = x, u_t = u]
$$

• Using Bellman expectation equation

$$
Q_{\pi}(x, u) = E_{\pi}[r_t + \gamma Q_{\pi}(x_{t+1}, u_{t+1}|x_t = x, u_t = u)]
$$

\n
$$
Q_{\pi}(x, u) = \sum_{x'} T(x, u, x')r(x, u, x')
$$

\n
$$
+ \gamma \sum_{x'} T(x, u, x')Q_{\pi}(x', \pi(x'))
$$

Optimal value function

• Optimal state-value function is maximum value function over all policies.

$$
V^*(x) = \max_{\pi} V_{\pi}(x)
$$

• Optimal action-value function is maximum action-value function over all policies.

$$
Q^*(x, u) = max_{\pi} Q_{\pi}(x, u)
$$

• All optimal policies achieve optimal state- and action-value functions.

What is the optimal action if we know *Q**? What about *V**?

Optimal policy vs optimal value function

• Optimal policy for optimal action-value function

$$
\pi^*(x) = arg max_u Q^*(x, u)
$$

• Optimal action for optimal state-value function

$$
\pi^*(x) = arg max_u E_x \cdot [r(x, u, x') + \gamma V^*(x')]
$$

$$
\pi^*(x) = arg max_u \sum_{s'} T(x, u, x') \cdot (r(x, u, x') + \gamma V^*(x'))
$$

Value iteration

Do you notice that this is an expectation?

• Starting from $V_0^*(x) = 0 \quad \forall x$ iterate

$$
V_{i+1}^{*}(x) = max_{u} \sum_{x'} T(x, u', x') \Big(r(x, u, x') + \gamma V_{i}^{*}(x') \Big)
$$

until convergence.

• Value iteration converges to *V*(x).*

 $G^*(x) = min_u \{ l(x, u) + G^*(f(x, u)) \}$ Compare to from last week!

Iterative policy evaluation

- Problem: Evaluate value of policy π .
- Solution: Iterate Bellman expectation back-ups.
- $V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_n$
- Using synchronous back-ups:
	- For all states *x*
	- Update *Vk+1(x)* from *V^k (x')*
	- Repeat

$$
V_{k+1}(x) = \sum_{x} T(x, \pi(x), x') \Big(r(x, \pi(x), x') + \gamma V_k(x') \Big)
$$

\n
$$
V_{k+1}(x) = \sum_{x} \pi(u|x) \cdot \sum_{x} T(x, u, x') \Big(r(x, u, x') + \gamma V_k(x') \Big)
$$

Note: Starting point can be random policy.

From slide 11.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

V Greedy policy

r=-1 for all actions

 $k=1$

 $k = 2$

Policy improvement and policy iteration

- Given a policy π , it can be improved by
	- $-$ Evaluating \overline{V}_{π}
	- $-$ Forming a new policy by acting greedily with respect to $\overline V_\pi$
- This always improves the policy.
- Iterating multiple times called *policy* iteration.
	- Converges to optimal policy.

Computational limits – Value iteration

- Complexity $O(|U||X|^2)$ per iteration.
- Effective up to medium size problems (millions of states).
- Complexity when applied to action-value function $O(|U|^2|X|^2)$ per iteration.

- Markov decision processes represent environments with uncertain dynamics.
- Deterministic optimal policies can be found using statevalue or action-value functions.
- Dynamic programming is used in value iteration and policy iteration algorithms.

Next week: From MDPs to RL

- Readings
	- SB Ch. 5-5.4, 5.6, 6-6.5

