

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

Ville Kyrki 1.10.2019

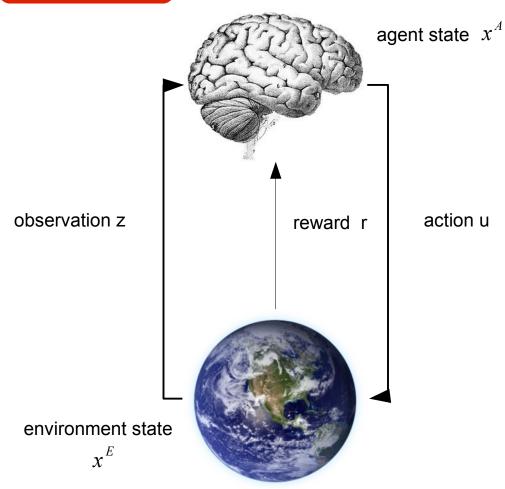
Today

Markov decision processes

Learning goals

- Understand MDPs and related concepts.
- Understand value functions.
- Be able to implement value iteration.

Markov decision process



MDP

Environment fully observable

$$o = x^E = x^A$$

Defined by dynamics

$$P(x_{t+1}|x_t,u_t)$$

And reward function

$$r_t = r(x_{t+1}, x_t)$$

Solution e.g.

$$u_{1,...,T}^* = max_{u_1,...,u_T} \sum_{t=1}^{T} r_t$$

Represented as policy $u = \pi(x^A)$

Markov property

- "Future is independent of past given the present"

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1,...,S_t)$$

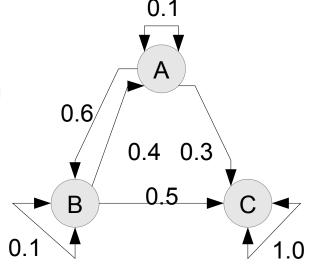
- State captures all history.
- Once state is known, history may be thrown away.

No "decision" here!

- Markov process is a memoryless random process, i.e. random state sequence S with the Markov property.
- Defined as (X,T)
 - X: set of states
 - $T: X \times X \rightarrow [0,1]$ state transition function

•
$$T_t(x, x') = P(x_{t+1} = x' | x_t = x)$$

- P can be represented as transition probability matrix
- State sequences called episodes

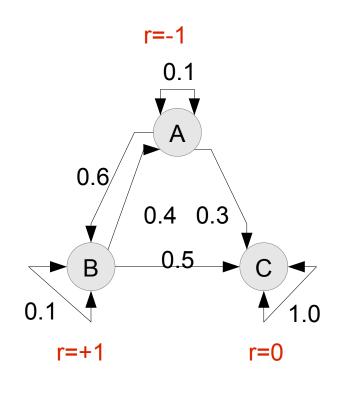


Still no "decision"!

Markov reward process

- Markov reward process =
 Markov process with rewards
- Defined by (X, T, r, γ)
 - X, T :as above
 - $-r: X \to \mathcal{R}$ reward function
 - -y [0,1]: discount factor
- Accumulated rewards in finite (H steps) or infinite horizon

$$\sum_{t=0}^{H} \gamma^{t} r_{t} \qquad \sum_{t=0}^{\infty} \gamma^{t} r_{t}$$



Return R: accumulated rewards from time t

$$R_{t} = \sum_{k=0}^{H} \gamma^{k} r_{t+k+1}$$

Why discount?

State value function for MRPs

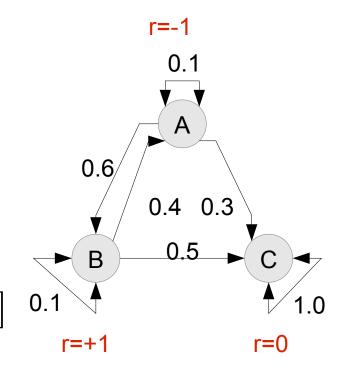
 State value function V(x) is expected cumulative rewards starting from state x

$$V(x) = E[R_t | x_t = x]$$

 Value function can be defined by Bellman equation

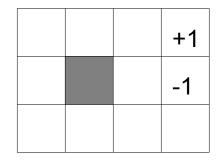
$$V(x) = E[R_t | x_t = x]$$

$$V(x) = E[r_{t+1} + \gamma V(x_{t+1}) | x_t = x]$$



Markov decision process (MDP)

- Markov decision process
 defined by (X, U, T, R, γ)
 - X, γ : as above
 - U: set of actions (inputs)
 - $T: X \times U \times X \rightarrow [0,1]$ $T_t(x, u, x') = P(x_{t+1} = x' | x_t = x, u_t = u)$
 - $R: X \times U \times X \rightarrow \mathcal{R}$ reward function $r_t(x, u, x') = r(x_{t+1} = x', x_t = x, u_t = u)$

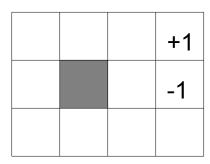


	0.8	
0.1		0.1

• Goal: Find policy $\pi(x)$ that maximizes cumulative rewards.

Policy

- Deterministic policy $\pi(X):X \to U$ is mapping from states to actions.
- Stochastic policy π(u|x): X,U → [0,1]
 is a distribution over actions given
 states.
- Optimal policy π*(x) is a policy that is better or equal than any other policy (in terms of cumulative rewards)
 - There always exists a deterministic optimal policy for a MDP.

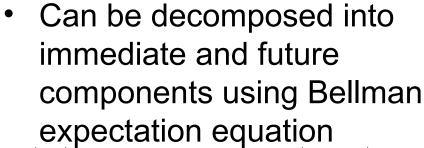


	0.8	
0.1	A	0.1

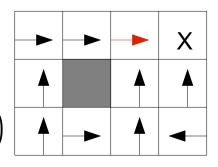
MDP value function

• State-value function of an MDP is expected return starting from state s and following policy π .

$$V_{\pi}(x) = E_{\pi}[R_t|x_t = x]$$



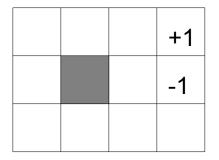
$$\begin{split} V_{\pi}(x) &= E_{\pi}[r_{t} + \gamma V_{\pi}(x_{t+1}) | x_{t} = x] \\ V_{\pi}(x) &= \sum_{x'} T(x, \pi(x), x') r(x, \pi(x), x') \\ &+ \gamma \sum_{x'} T(x, \pi(x), x') V_{\pi}(x') \end{split}$$



Action-value function

 Action-value function Q is expected return starting from state s, taking action a, and then following policy π.

$$Q_{\pi}(x, u) = E_{\pi}[R_t|x_t = x, u_t = u]$$

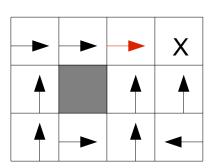


Using Bellman expectation equation

$$Q_{\pi}(x,u) = E_{\pi}[r_{t} + \gamma Q_{\pi}(x_{t+1}, u_{t+1} | x_{t} = x, u_{t} = u)]$$

$$Q_{\pi}(x,u) = \sum_{x'} T(x, u, x') r(x, u, x')$$

$$+ \gamma \sum_{x'} T(x, u, x') Q_{\pi}(x', \pi(x'))$$



Optimal value function

 Optimal state-value function is maximum value function over all policies.

$$V^*(x) = max_{\pi}V_{\pi}(x)$$

 Optimal action-value function is maximum action-value function over all policies.

$$Q^*(x, u) = max_{\pi}Q_{\pi}(x, u)$$

 All optimal policies achieve optimal state- and action-value functions.

Optimal policy vs optimal value function

Optimal policy for optimal action-value function

$$\pi^*(x) = arg max_u Q^*(x, u)$$

Optimal action for optimal state-value function

$$\pi^{*}(x) = arg \ max_{u} E_{x'}[r(x, u, x') + \gamma V^{*}(x')]$$

$$\pi^{*}(x) = arg \ max_{u} \sum_{s'} T(x, u, x') \Big| r(x, u, x') + \gamma V^{*}(x') \Big|$$

Value iteration

Do you notice that this is an expectation?

• Starting from $V_0^*(x) = 0 \quad \forall x$ iterate

$$V_{i+1}^*(x) = \max_{u} \sum_{x'} T(x, u', x') \Big(r(x, u, x') + \gamma V_i^*(x') \Big)$$
 until convergence.

• Value iteration converges to $V^*(x)$.

Compare to

$$G^*(x) = min_u \{l(x, u) + G^*(f(x, u))\}$$
 from last week!

Iterative policy evaluation

- Problem: Evaluate value of policy π .
- Solution: Iterate Bellman expectation back-ups.
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_{\pi}$
- Using synchronous back-ups:
 - For all states x
 - Update $V_{k+1}(x)$ from $V_k(x')$
 - Repeat

$$V_{k+1}(x) = \sum_{x'} T(x, \pi(x), x') (r(x, \pi(x), x') + \gamma V_k(x'))$$

$$V_{k+1}(x) = \sum_{u} \pi(u|x)$$

$$\sum_{x'} T(x, u, x') [r(x, u, x') + \gamma V_{k}(x')]$$

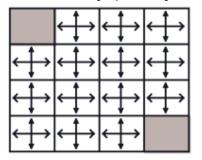
Note: Starting point can be random policy.

From slide 11.

V

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Greedy policy



	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

1	1
v	
$\boldsymbol{\kappa}$	1

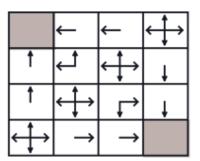
k = 0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

r=-1 for all actions

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0



Policy improvement and policy iteration

- Given a policy π , it can be improved by
 - Evaluating V_{π}
 - Forming a new policy by acting greedily with respect to V_{π}
- This always improves the policy.
- Iterating multiple times called policy iteration.
 - Converges to optimal policy.

Computational limits – Value iteration

- Complexity O(|U||X|²) per iteration.
- Effective up to medium size problems (millions of states).
- Complexity when applied to action-value function O(|U|²|X|²) per iteration.

Summary

- Markov decision processes represent environments with uncertain dynamics.
- Deterministic optimal policies can be found using statevalue or action-value functions.
- Dynamic programming is used in value iteration and policy iteration algorithms.

Next week: From MDPs to RL

- Readings
 - SB Ch. 5-5.4, 5.6, 6-6.5