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Today

• Direct policy learning via policy gradient.



 

Learning goals

• Understand basis and limitations of policy gradient 
approaches.



 

Motivation

• Even with value function approximation, large state 
spaces can be problematic.

• Learning parametric policies p(u|x,q) directly without 
learning value functions sometimes easier.

• Non-Markov (partially observable) or adversarial 
situations might benefit from stochastic policies.

https://www.youtube.com/watch?v=xyJAvghtqIM

https://www.youtube.com/watch?v=xyJAvghtqIM


 

Value-based vs policy-based RL

VALUE FUNCTION POLICY

Value-based
• Learned value function.
• Implicit policy.

Policy-based
• No value function.
• Learned policy.

Actor-critic
• Learned value function.
• Learned policy.

- Can learn stochastic
  policies.
- Usually locally optimal.



 

Stochastic policies

• Discrete actions: Soft-max policy 

• Continuous actions: Gaussian policy

πθ(u t∣x t)=1 /Z e
θ
T
φ( xt , ut)

Normalization constant

πθ(u t∣x t)∼N (θ
T φ (x t) ,σ

2)

Probability portional to
expontiated linear 
combination of features.

Mean is linear 
combination of features.

Can also be understood as linear policy plus
exploration uncertainty
πθ(u t∣x t)=θ

T φ( x t)+ϵ ϵ∼N (0 ,σ2)

Z=∑u
eθ

T
φ( xt , ut )

Note: Policies include exploration!

But how to fit these? 



 

Supervised policy learning – behavioral 
cloning
• Assume examples of policy are given in form of (x,u) 

pairs.

• How to fit a stochastic policy to these?

πθ(u t∣x t)∼N (θ
T φ (x t) ,σ

2)

Note: This is not RL!

Example



 

Supervised policy learning – behavioral 
cloning
• Assume examples of policy are given in form of (x,u) 

pairs. Assume independent examples.

• How to fit a stochastic policy to these?

• Maximum likelihood parameter estimation
– Here: maximize probability of actions given states and 

parameters.

πθ(u t∣x t)∼N (θ
T φ (x t) ,σ

2)

Note: This is not RL!

P(U∣X ;θ)=∏t
πθ (ut∣x t)

How to proceed?

Example



 

Example: Maximum likelihood estimation

• Maximize log-likelihood

N (μ ,σ2)=
1

√ 2πσ2
e
−(u−μ)2

√2σP(U∣X ;θ)=∏t
πθ (ut∣x t)



 

Example: Maximum likelihood estimation

• Maximize log-likelihood

N (μ ,σ2)=
1

√ 2πσ2
e
−(u−μ)2

2σ

log P(U∣X ;θ)=∑t
log πθ (ut∣x t)

∇ log P(U∣X ;θ)=∑t
∇ log πθ (u t∣x t)

P(U∣X ;θ)=∏t
πθ (ut∣x t)

But we don’t have examples!



 

What is a good policy?

• How to measure policy quality?

• More generally,

R(θ)=E [∑t=0

T
γ
t r t ]

R(θ)=E [∑t=0

T
a t r t ]

Can also represent
average reward per
time step.

How to optimize parameters?



 

Policy gradient

• Use gradient ascent on R(q).

• Update policy parameters by

• How to calculate gradient?

θm+1=θm+αm∇θ R∣θ=θm

R(θ)=E [∑t=0

T
a t r t ]

Depends on q.

∑
m=0

∞

αm>0 ∑
m=0

∞

αm
2
<∞

Guarantees convergence to
local minimum.

How to estimate gradient from data (if we 
have a chance to try different policies)?



 

Finite difference gradient estimation

• What is gradient?
– Vector of partial derivatives.

• How to estimate derivative?
– Finite difference:

• For policy gradient:
– Generate variation
– Estimate experimentally
– Compute gradient
– Repeat until estimate converged

f ' (x )≈
f ( x+dx)− f (x )

dx

Δθ i
R(θ+Δθ i)≈ R̂i=∑t=0

H
a t rt

[ g FD
T , Rref ]

T
=(ΔΘ

T
ΔΘ )

−1
ΔΘ

T R̂
ΔΘ

T
=[Δ θ1,… ,Δ θ I1,… ,1 ]

R̂T=[ R̂1,… , R̂ I ]

Where does this come from?

Not easy to choose.

R̂i≈Rref + g
T
Δθi



 

Likelihood-ratio approach

• Assume trajectories tau are generated by roll-outs, thus

• Expected return can then be written

• Gradient is thus

• Why do that?

Likelihood ratio “trick”:
Substitute

τ∼ pθ(τ )= p( τ∣θ) R( τ )=∑t=0

H
a t r t

R(θ)=E τ [R( τ )]=∫ pθ (τ )R( τ )d τ

∇θ R (θ)=∫∇θ pθ(τ )R(τ )d τ

=∫ pθ (τ )∇ θ log pθ (τ )R( τ )d τ

∇θ pθ( τ )= pθ( τ )∇ θ log pθ (τ )

pθ (τ )= p( x0)∏
t=0

H

p( x t+1∣x t ,u t)πθ (u t∣x t)

Try substitution for log-gradient!

=Eτ [∇ θ log pθ (τ )R(τ )]

∇θ log pθ( τ )=∑
t=0

H

∇ θ log πθ (u t∣x t)

We know this!



 

Example differentiable policies

• Soft-max policy 

– Log-policy (score function)

• Gaussian policy

– Log-policy

πθ(u t∣x t)∝e
θ
T
φ( xt ,ut )

Normalization constant missing.

∇θ log πθ (u t∣x t)=φ (x t ,u t)−E πθ [φ( x t ,⋅)]

πθ(u t∣x t)∼N (θ
T φ (x t) ,σ

2)

∇θ logπθ (u t∣x t)=
(u t−θ

T
φ (x t))φ ( x t)

σ
2

Probability proportional to
exponentiated linear 
combination of features.

Mean is linear 
combination of features.

Can also be understood as linear policy plus
exploration uncertainty
πθ(u t∣x t)=θ

T φ( x t)+ϵ ϵ∼N (0 ,σ2)



 

Example differentiable policies

• Discrete neural net policy 

• Gaussian neural network policy

πθ(u t∣x t)∝e
f θ ( xt ,u t)

Normalization constant missing.

πθ(u t∣x t)∼N ( f θ( x t) ,σ
2)

Probability proportional to
exponentiated neural 
network output.

∇θ log πθ (u t∣x t)=
(u t− f θ( x t))∇ θ f θ( x t)

σ
2

∇θ R (θ)=Eτ [∇θ log pθ (τ )R(τ )]
OK, now to applying the policy gradient:



 

MC policy gradient – REINFORCE

• Episodic version shown here.

• Approach:
– Perform episode J (=1,2,3,...).
– Estimate gradient 

– Repeat with new trial(s) until convergence.

• No need to generate policy variations because of 
stochastic policy.

≈
1
J
∑i=1

J

[(∑t=0

H
∇ θ log πθ (u t

[i]
∣x t
[i]
)) (∑t

r t , i )]

gR E=Eτ [(∑t=0

H
∇θ logπθ(ut∣x t))R(i)]

Reward for trial i.

Use empirical
mean.



 

Limitations so far

• High variance in gradient estimate because of stochastic 
policy.

• Slow convergence, hard to choose learning rate.
– Parametrization dependent gradient estimate.

• On-policy method.



 

Decreasing variance by adding baseline

• Constant baseline can be added to reduce variance of 
gradient estimate.

• Does not cause bias because

∇θ R (θ)=E τ [∇θ log pθ (τ )(R( τ )−b)]

E τ [∇θ log pθ( τ )b ]=∫∇ θ pθ (τ )b d τ=b∇θ∫ pθ( τ )d τ=b∇θ1=0

=Eτ [∇θ log pθ (τ )R(τ )]

Intuition:
Modifying rewards by a constant
does not change optimal policy.



 

Episodic REINFORCE with optimal 
baseline
• Optimal baseline for episodic REINFORCE (minimize 

variance of estimator):

• Approach:
– Perform trial J (=1,2,3,...).
– For each gradient element h

• Estimate optimal baseline
• Estimate gradient  

– Repeat until convergence.

bh=
E τ [(∑t=0

H
∇ θ h logπθ(ut∣x t))

2

Rτ ]
E τ [(∑t=0

H
∇θ h log πθ (ut∣x t))]

2

In practice, approximate
by empirical mean
(average over trials).

bh
g h=

1
J
∑i=1

J

[(∑t=0

H
∇ θ h logπθ (u t

[ i ]
∣x t
[ i ]
))(R(i)−bh[ i ])]

Even with optimal baseline, variance can be an issue.

Componentwise!



 

Policy gradient theorem

• Observation: Future actions do 
not depend on past rewards.

• PGT:
– Reduces variance of estimate → 

Fewer samples needed on 
average.

E [∇θ logπθ(ut∣x t)r k ]=0 ∀ t>k

“don't take into account past rewards 
when evaluating the effect of an 
action” (causality, taking an action 
can only affect future rewards)

g PGT=E τ [∑k=0

H

(∑t=0

k
∇ θ hlogπθ(ut∣x t))(ak rk−bkh)]

Note: If only rewards at final time step, this is
equivalent to REINFORCE.



 

Off-policy policy gradient

• What if we have samples from another policy (e.g. 
earlier timesteps?

Optimize 

using samples from  

• Use importance sampling!

E τ∼πθ (τ) [R( τ)]
π ' (τ )

E x∼p (x) [ f (x)]=∫ p (x ) f (x )dx

=E x∼q (x)[ p( x)q(x )
f (x )]

Where does this
come from?



 

Off-policy policy gradient

• What if we have samples from another policy (e.g. 
earlier timesteps?

Optimize 

using samples from  

• Use importance sampling!

E τ∼πθ (τ) [R( τ)]
π ' (τ )

E x∼p (x) [ f (x)]=∫ p (x ) f (x )dx

=E x∼q (x)[ p( x)q(x )
f (x )]

Where does this
come from?

E τ∼π ' (τ)[ πθ (τ)π ' ( τ)
R(τ )]Thus, optimize



 

Off-policy policy gradient

• We had earlier

• Thus  

E τ∼π ' (τ)[ πθ (τ)π ' ( τ)
R(τ )]

πθ(τ )

π ' (τ)
=

p (x0)∏
t=0

H

p (x t+1∣x t ,u t)πθ (u t∣x t)

p( x0)∏
t=0

H

p( x t+1∣x t ,ut)π ' (u t∣x t)

=

∏
t=0

H

πθ (u t∣x t)

∏
t=0

H

π ' (ut∣x t)

pθ (τ )= p (x0)∏
t=0

H

p (x t+1∣x t ,u t)πθ (u t∣x t)



 

Off-policy policy gradient

• Now the gradient

∇θ E τ∼π ' (τ)[ πθ(τ)π ' ( τ)
R(τ )]=E τ∼π '(τ)[∇ θπθ(τ)π ' ( τ)

R (τ)]
=E τ∼π ' (τ)[ πθ(τ)π ' (τ)

∇θ logπθ(τ )R(τ )]
=E τ∼π ' (τ)[(∏t

πθ (τ)

π ' (τ ))(∑t
∇θ log πθ(u t∣x t)) (∑t

r t )]
∇θ E τ∼πθ (τ) [R( τ)]=E τ∼πθ( τ) [(∑t

∇θ log πθ(u t∣x t)) (∑t
r t )]

Compare to on-policy (REINFORCE)



 

Gradient vs natural gradient

• Gradient depends on 
parametrization.

• Natural gradient 
parametrization 
independent.

• Fisher information matrix

∇θ
NG πθ (u∣x )=F θ

−1∇ θπθ(u∣x)

Fθ=E [∇θ log πθ (u∣x )∇θ log πθ (u∣x)
T ]

Normalizes parameter influence.

Potentially improves convergence significantly,
in practice sample-based approximation less useful.

Will be used later!

Intuition: Divide gradient update 
by second derivative.



 

Summary

• Policy gradient methods can be used for stochastic 
policies and continuous action spaces.

• Finite-difference approaches approximate gradient by 
policy adjustments.

• Likelihood ratio-approaches calculate gradient through 
known policy.

• Policy gradient often requires very many updates 
because of noisy gradient and small update steps.



 

Next: Actor-critic approaches

• Can we combine policy learning with value-based 
methods?
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