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Today

• Partially observable Markov decision processes



 

Learning goals

• Understand POMDPs and related concepts. 

• Be able to explain why solving POMDPs is difficult.



 

Partially observable MDP (POMDP)
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Agent state is not environment state!



 

Partial observability example

• Observe only adjacent walls.

• Starting state unknown, in 

upper row of grid.
• Assume perfect actions.

• Give a policy as function of

observations!

• Any problems?

Observations:

Can you present a (time-dependent) optimal policy as a tree?



 

History and information state

• History (= Information state) is the sequence of actions 
and observations until time t.

• Information state is Markovian, i.e.,

• POMDP thus corresponds to Information state MDP. 

P I (I t+1∣ut , I t)=PI ( I t+1∣ut , I t , I t−1 ,… , I 0)



 

Example: Tiger problem

Policy depends on history of observations and actions
= information state.

?

r=-100r=10

U = {open right,
open left,
listen}

P(HL|TL)=0.85
P(HR|TL)=0.15
P(HL|TR)=0.15
P(HR|TR)=0.85

What kind of policy would be reasonable?



 

Belief state, belief space MDP

• Belief state = distribution over states.
– Compresses information state.

• Belief 

• POMDP corresponds to belief space MDP.
• POMDP solution can be structured as

– State estimation (of belief state) +
– Policy on belief state.

b t( x)≡ p( x t=x∣I t) Can be represented as a vector
b=(b( x1) , b( x2) ,…)



 

Belief update

= state estimation

bz
u
( x)=b t+1=

P (z∣x ,u)∑x '
P ( x∣x ' , u )bt (x ')

∑x ' , x ' '
P (x ' '∣x ' , u)P ( z∣x ' ' , u)b t( x ' )

Similar to state estimator, e.g. Kalman filter,
particle filter:

“prediction”“measurement update”

Normalization factor

Tiger example update



 

Single step policies 

• Value of belief state for a particular single step policy

• Can be represented as alpha vector (consisting of 
values for each state)

• Value of optimal policy is then

V π(b)=∑x
b (x )V π (x )

V π(b)=α
T b

V ∗
(b)=maxi α i

T b

Maximum over all actions
Piecewise linear and 
convex (PWLC)



 

Conditional plans and policy trees

• Similar to single step policies, value functions of multi-
step policies can be represented as alpha vectors.

• Best policy for a particular belief is then again

LI

OR LI

HL HR

V ∗
(b)=maxi α i

T b

What's the α-vector of this policy?



 

Value iteration on belief states

• Bellman equation

• No trivial closed form solution (similar to MDP tabulation) because 
V(b) is a function of a continuous variable. 

• At each iteration, each plan of previous iteration is combined with 
each possible action/observation pair to generate plans of length n+1.
– At each iteration number of conditional plans increases by

• Some conditional plans often not optimal for any belief.
– Corresponding alpha-vectors never dominant.

– Alpha-vectors (/conditional plans) can be pruned at each iteration.
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Starting from known belief state



 

Computational complexity

• Number of possible policy trees of horizon H is

• Infinite horizon POMDPs thus not possible to construct 
in general. 

|U|

|Z|H−1
|Z|−1≈|U|

|Z|H−1



 

Summary

• Partially observable MDPs are MDPs with observations 
that depend stochastically on state.

• POMDP = belief-state estimation + belief-state MDP.

• POMDPs computationally untractable in general 
situations.
– Approximations are needed for larger than toy problems.



 

Next week: Larger POMDPs
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