Aalto University
School of Electrical
Engineering

ELEC-E8125 Reinforcement learning Partially observable Markov Decision Processes

Ville Kyrki
19.11.2019

Today

- Partially observable Markov decision processes

Learning goals

- Understand POMDPs and related concepts.
- Be able to explain why solving POMDPs is difficult.

Partially observable MDP (POMDP)

Partial observability example

- Observe only adjacent walls.
- Starting state unknown, in upper row of grid.
- Assume perfect actions.
- Give a policy as function of observations!
- Any problems?

History and information state

- History (= Information state) is the sequence of actions and observations until time t.
- Information state is Markovian, i.e.,

$$
P_{I}\left(I_{t+1} \mid u_{t}, I_{t}\right)=P_{I}\left(I_{t+1} \mid u_{t}, I_{t}, I_{t-1}, \ldots, I_{0}\right)
$$

- POMDP thus corresponds to Information state MDP.

Example: Tiger problem

$\mathrm{U}=\{$ open right, open left, listen\}
$\mathrm{P}(\mathrm{HL} \mid \mathrm{TL})=0.85$ $\mathrm{P}(\mathrm{HR} \mid \mathrm{TL})=0.15$ $\mathrm{P}(\mathrm{HL} \mid \mathrm{TR})=0.15$ $\mathrm{P}(\mathrm{HR} \mid \mathrm{TR})=0.85$

What kind of policy would be reasonable?

Policy depends on history of observations and actions = information state.

Belief state, belief space MDP

- Belief state = distribution over states.
- Compresses information state.
- Belief $b_{t}(x) \equiv p\left(x_{t}=x \mid I_{t}\right) \leftharpoonup \quad$ Can be represented as a vector

$$
\boldsymbol{b}=\left(b\left(x_{1}\right), b\left(x_{2}\right), \ldots\right)
$$

- POMDP corresponds to belief space MDP.
- POMDP solution can be structured as
- State estimation (of belief state) +
- Policy on belief state.

Belief update

Similar to state estimator, e.g. Kalman filter, particle filter:
= state estimation

Single step policies

- Value of belief state for a particular single step policy

$$
V_{\pi}(\boldsymbol{b})=\sum_{x} b(x) V_{\pi}(x)
$$

- Can be represented as alpha vector (consisting of values for each state)

$$
V_{\pi}(\boldsymbol{b})=\boldsymbol{\alpha}^{T} \boldsymbol{b}
$$

- Value of optimal policy is then

$$
V^{*}(\boldsymbol{b})=\max _{i} \boldsymbol{\alpha}_{i}^{T} \boldsymbol{b}
$$

Piecewise linear and convex (PWLC)

Conditional plans and policy trees

- Similar to single step policies, value functions of multistep policies can be represented as alpha vectors.
- Best policy for a particular belief is then again

$$
V^{*}(\boldsymbol{b})=\max _{i} \boldsymbol{\alpha}_{i}^{T} \boldsymbol{b}
$$

Value iteration on belief states

- Bellman equation
$V_{n+1}^{*}(b)=\max _{u}\left[\sum_{x} b(x) r(x, u)+\gamma \sum_{z} \sum_{x^{\prime}} P\left(z \mid x^{\prime}, u\right) \sum_{x} P\left(x^{\prime} \mid x, u\right) b(x) V_{n}^{*}\left(b_{z}^{u}\right)\right]$
- No trivial closed form solution (similar to MDP tabulation) because $V(b)$ is a function of a continuous variable.
- At each iteration, each plan of previous iteration is combined with each possible action/observation pair to generate plans of length $n+1$.
- At each iteration number of conditional plans increases by

$$
\left|V_{n+1}\right|=|U|\left|V_{n}\right|^{|Z|}
$$

- Some conditional plans often not optimal for any belief.
- Corresponding alpha-vectors never dominant.
- Alpha-vectors (/conditional plans) can be pruned at each iteration.

Starting from known belief state

Computational complexity

- Number of possible policy trees of horizon H is

$$
|U|^{\frac{|Z|^{H}-1}{Z \mid-1}} \approx|U|^{|Z|^{H-1}}
$$

- Infinite horizon POMDPs thus not possible to construct in general.

Summary

- Partially observable MDPs are MDPs with observations that depend stochastically on state.
- POMDP = belief-state estimation + belief-state MDP.
- POMDPs computationally untractable in general situations.
- Approximations are needed for larger than toy problems.

Next week: Larger POMDPs

Aalto University
School of Electrical
Engineering

