

ELEC-E8125 Reinforcement Learning Large POMDPs

Ville Kyrki 26.11.2019

• POMDPs towards largish real world problems.

Learning goals

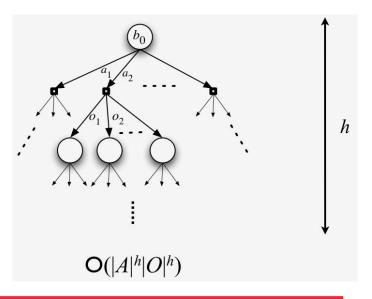
How to solve complex POMDPs by
(i) approximating value function,
(ii) considering only part of belief space, and
(iii) treating solution process as search.

POMDP application examples

- Intention-aware planning for autonomous vehicles (Bai et al., 2015)
- Grasping (Hsiao et al. 2007, Horowitz et al. 2013)
- Manipulation of multiple objects (Pajarinen&Kyrki 2015)

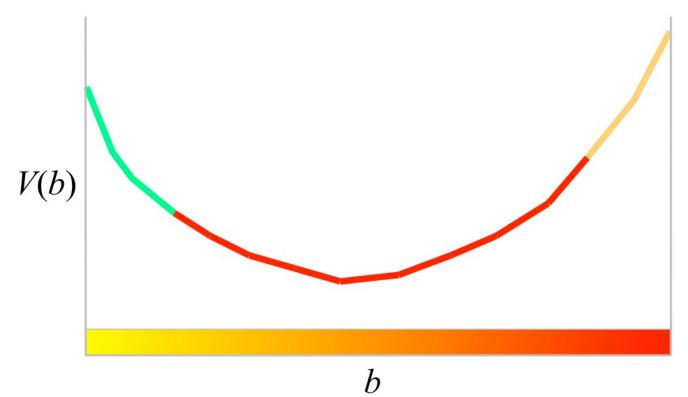
"Curses" of POMDP

- Curse of dimensionality
 - Complexity exponential in number of states
 - Double exponential in dimensionality of state space
- Curse of history
 - Complexity exponential in length of history



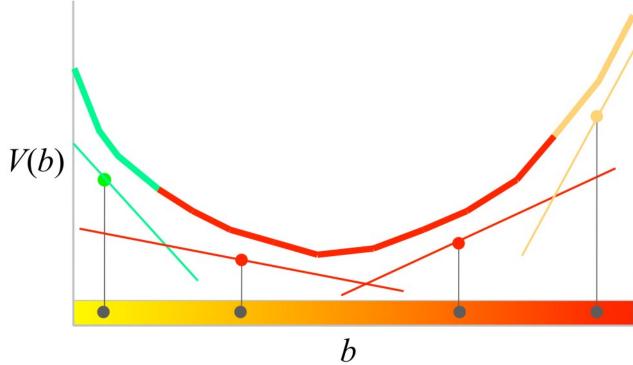
Curse of history with value iteration

• Number of possible policies is exceedingly high.



Approximating value function

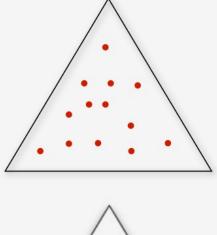
Point-based approximation (e.g. Point-based value iteration, Pineau 2003)

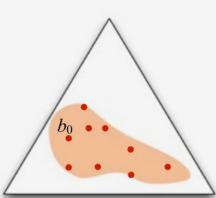


Belief-space sampling

 Instead of calculating back-ups for whole belief space, use a set of points to approximate.

 Instead of using points uniformly, use a set of points reachable from a starting belief.





Point-based POMDP approaches

- PBVI, Pineau et al., 2003
 - Sample reachable points under arbitrary policy.
- SARSOP, Kurniawati et al., 2008
 - Sample reachable points under optimal policy.
- Point-based methods help with larger belief spaces.

Can we find an even better way to concentrate on the most relevant part of belief space?

On-line approaches

- Idea: Search reachable beliefs from current state.
- Basic algorithm
 - Plan starting from current belief.
 - Execute first step.
 - Update belief.
 - Repeat.

On-line planning equates to search

- Build a search tree from current belief.
 - Start from a tree with one node corresponding to current belief.
 - Choose a node to expand.
 - Choose an action based on (optimistic) heuristic.
 - Choose an observation based on another heuristic.
 - Expand tree and backup back to root.
 - Repeat
- Execute the best action.
- Update belief.
- Repeat.

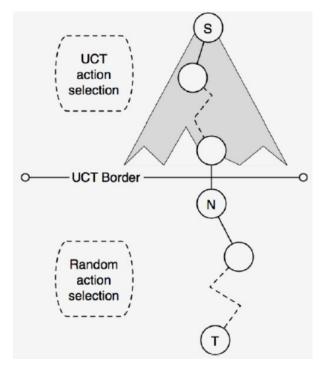
Forget partial observability for now.

A step back: Monte Carlo tree search

- Search method for optimal decision making.
- State-of-the-art for playing games (e.g. Alpha Go).
- Iteratively builds a search tree.
- Phases:
 - Selection: Choose a promising node to expand.
 - Expansion: Add a new node.
 - Simulation: Simulate value for new node.
 - Backpropagation: Back-up value to root (update values for parents).

MCTS operation

- From start node S choose actions to walk down tree until reaching a leaf node.
- Choose an action and create a child node *N* for that action.
- Perform a random roll-out (take random actions) until end of episode (or for a fixed horizon).
- Record returns as value for *N* and back up value to root.



Remember MDPs!

Node selection in MCTS

- Node selection has to balance exploration and exploitation (note difference to RL, here x&x is made only in computation).
- First choose
- Upper confidence bound 1 (UCB1) on trees (UCT).
 - A bound for value of a node (Kocsis<u>&Szepesvari</u>, 2006).

$$Q^{+}(x,u) = Q(x,u) + c \sqrt{\frac{\log N(x)}{N(x,u)}}$$

Positive exploration constant

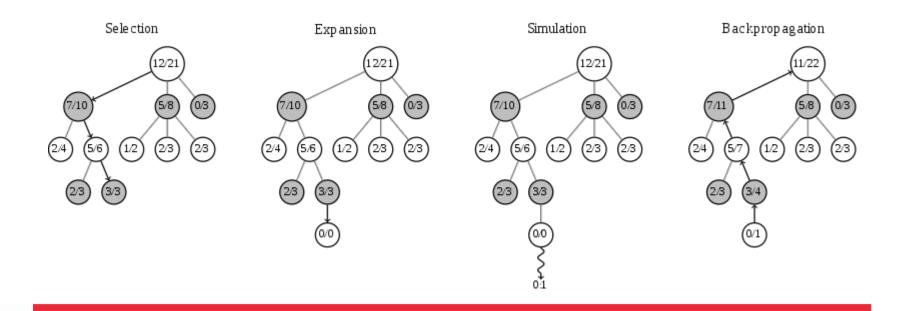
Visitation count

MCTS simulation phase

- Perform (one or) several roll-outs from leaf node using random action selection.
- Stop at terminal state or until a discount horizon is reached.
- Estimate value of state as mean return of the *N* simulations: $V(x) = \frac{1}{N} \sum_{i} R_{i}$

MCTS: Example in game playing

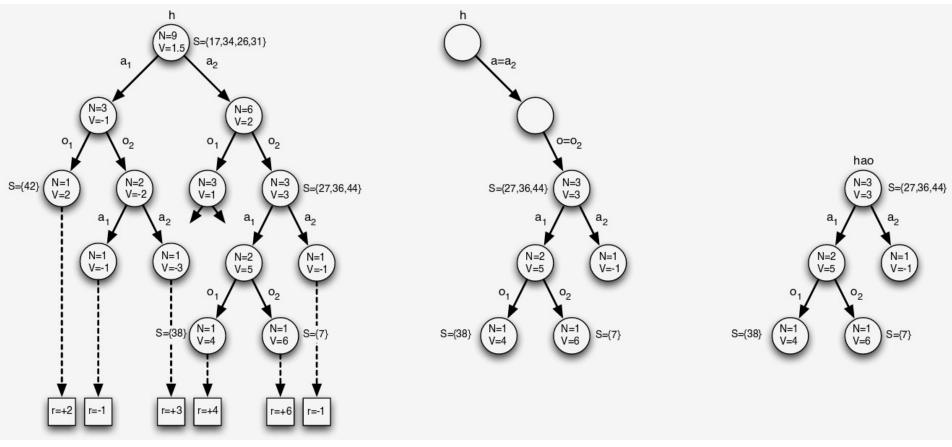
• Value number of won games.



From MCTS to POMCP (Silver&Veness, 2010)

- Extension of MCTS to POMDPs.
- Search tree represents histories (actions and observations) instead of states.
- Belief state approximated by a particle filter.
 - After taking an action, update belief by sampling particles by using simulation and keeping ones with true observation.
- Each node has visitation count, mean value and particles.

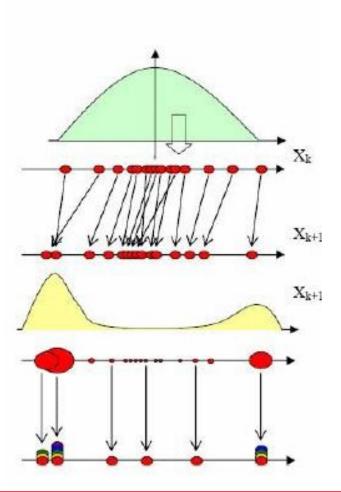
POMCP example



Silver&Veness, 2010

Recap (hopefully): Particle filter

- Starting from current belief, sample future.
- Calculate weights depending on observation probability.
- Resample according to weights.



Aalto University School of Electrical Engineering

Off-line vs on-line approaches

Off-line

- Plan for all beliefs
- High computational cost
- Fast online execution
- Significant implementation effort
- Cannot handle changing environment

On-line

- Plan for current belief
- Lower computational cost
- Slower online execution
- Easier to implement
- Can handle changing environment

We didn't cover

- Other on-line approaches available, e.g. DESPOT (Somani et al., 2013).
- Current work towards combining off-line and on-line approaches.
 - E.g. using precomputed macro-actions.

Summary

- Key to more efficient POMDP solutions is to consider only parts of belief space.
 - Off-line approaches sample over reachable beliefs.
 - On-line approaches sample over currently reachable beliefs.
- Real-world problems are complicated and solutions require approximations.
 - Careful choices in modeling are important.

