

Mobile Communication Systems

Lecture II

Prof. Tarik Taleb School of Electrical Engineering Aalto University

© Tarik TALEB 2020

Main References:

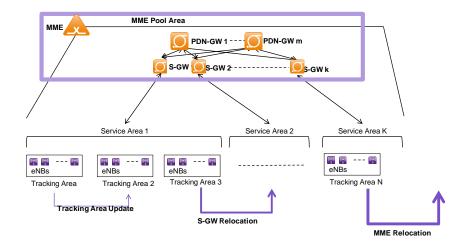
TS 33.401 – LTE Security

• TS 33.102 – 3G Security

• 3GPP Technical Specifications 23.401

• 3GPP Technical Specifications 23.402

44


Outline

- Legacy Networks:
 - GSM
 - GPRS
 - UMTS

System Architecture Evolution

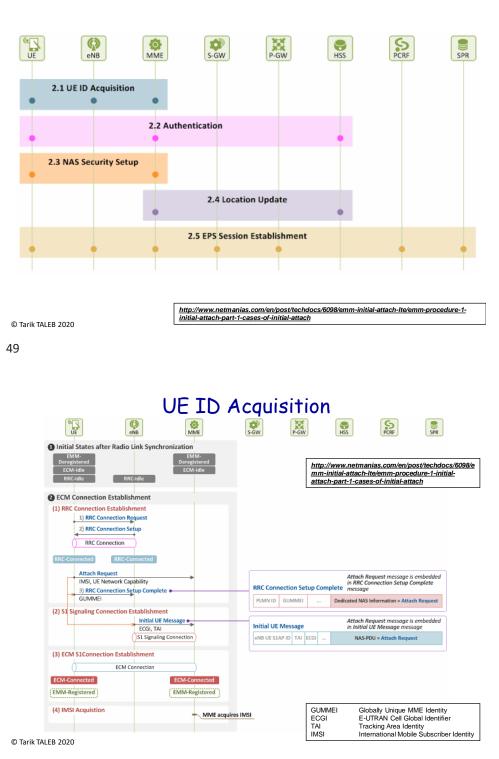
- Background & requirements
- Motivation
- Basic principles
- Network elements and high level functions
- Attach procedure
- EPC Protocols
- Architectural enhancements for E-UTRAN and interoperability with 3GPP and non-3GPP accesses
 - Interoperability Mobility and handover management
 - Policy Control and Charging (PCC)
 - QoS Provisioning
 - Security (Authentication) & its evolution

Tracking Areas, Service Areas, & MME Pool Areas

© Tarik TALEB 2020

46

•


UE

LTE UE Identifiers

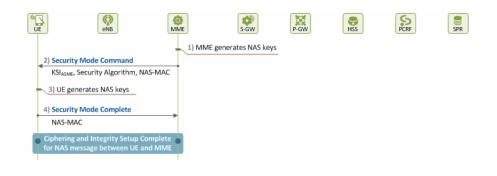
- IMEI or MEID Mobile Equipment Identifier
 - Globally unique number identifying a physical piece of mobile station equipment
 - MEID allows hexadecimal digits while IMEI (Int'l Mobile Station Equipment Identity) allows only decimal digits
 - Only sent to MME (in NAS), not to eNB.
 - Sent only after NAS security is setup (i.e, encrypted and integrity protected).
- SIM (Subscriber Identity Module)
 - HD: Universal Integrated Circuit Card (UICC)
 - SW: USIM Universal Subscriber Identity Module
 - IMSI
 - Seldom sent over the air (only during attach, if no other valid temporary ID is present in the UE).
 - Temporary identities used instead (S-TMSI, GUTI)
 - Brought, among other things, security improvements (e.g., mutual authentication, longer encryption keys, etc)

```
© Tarik TALEB 2020
```

S-TMSI System architecture evolution Temporary Mobile Subscriber Identity GUTI Globally Unique Temporary Identity

Initial Attach

Authentication (O) eNB S PCRF **O** MME S-GW e HSS SPR P-GW (1) Acquisition of Authentication Vector 1) Authentication Information Request 2) Generate Authentication Vectors (AVs) AV = {RAND, AUTN, XRES, K_{ASME}} IMSI, Service Network ID (SN ID = MCC, MNC) 3) Authentication Information Answer Authentication Vectors (AV) (2) Mutual Authentication 4) Authentication Request RAND, AUTN, KSIASME 5) Generate AV, and then Network authenticated if AUTN_{UE} = AUTN_{HSS} 6) Authentication Response RES 7) UE authenticated if RES = XRES Authentication Complete ASME MCC MNC AUTN Access Security Management Entity (MME) Mobile Country Code assigned by ITU, 3 digits Mobile Network Code assigned by National Authority, 2~3 digits Authentication TokeN

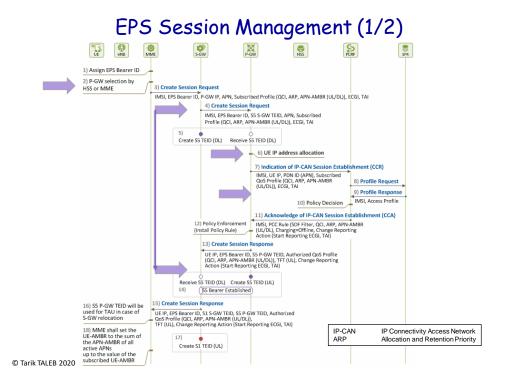

© Tarik TALEB 2020

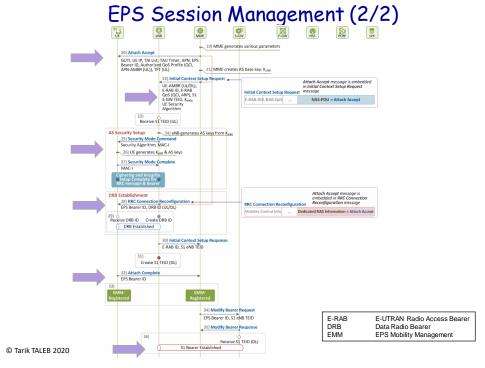
51

NAS Security Setup

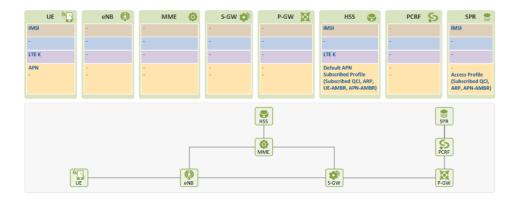
KSI

Key Set Identifier


ASME KSI	Access Security Management Entity (MME) Key Set Identifier
NAS	Non-Access Stratum


Location Update

QCI: QoS Class Indicator ARP: Allocation and Retention Priority AMBR: Aggregate Maximum Bit Rates


© Tarik TALEB 2020

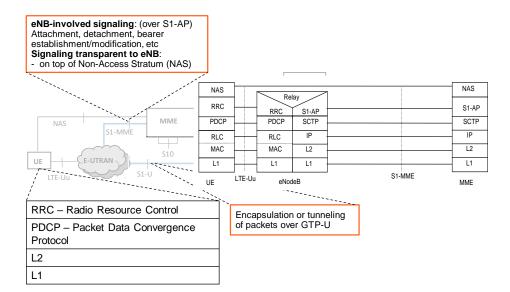
55

Information Elements: Before Attach

UE ध	eNB 💮	MME 🧔	S-GW 🗊	P-GW 🐹	HSS 🌎	PCRF 5	SPR 🌻
IMSI GUTI UE IP address C-RNTI -	- C-RNTI eNB S1AP UE ID MIME S1AP UE ID	IMSI GUTI UE IP addr - eNB S1AP UE ID MME S1AP UE ID	IMSI - - - -	IMSI - UP IP address - -	IMSI - - - -	IMSI - UE IP address - -	IMSI - - - -
ECGI TAI TAI List -	ECGI TAI - -	ECGI TAI TAI List -	ECGI TAI - -	ECGI TAI - -	- - - MME ID	ECGI TAI - -	
LTE K NAS Security Info AS Security Info	- AS Security Info	- NAS Security Info -	-	•	LTE K - -	-	- - -
APN APN IN Use EPS Bearer ID DRB ID - - QCI - - APN-AMBR (UL) TFT (UL) -	- EPS Bearer ID DRB ID E-RAB ID S.T TEID (UL/DL) - QCI ARP UE-AMBR (UL/DL) - -	Default APN APN in Use Bebarer ID F-RAB ID S. TEID (U/DL) S. TEID (U/DL) GCI ARP UE-AMBR (U/DL) APN-AMBR (U/DL) APN-AMBR (U/DL) Caboribed Profile (Subscribed Pcofile (Subscribed Pcofile (Subscribed Pcofile	- APN in Use EPS Bearer ID - - 51 TEID (UL/DL) SS TEID (UL/DL) QCI ARP - -	APN in Use EPS Bearer ID SS TEID (UL/DL) GCI* ARP* - APN-AMBR (UL/DL)* TFT (UL/DL)* * PCC Rule	Default APN	APN in Use CCC4* ARP* APN-AMBR (UL/DL)* SOF Filter* * PCC: Rule	- - - - - - - - - - - - - - - - - - -

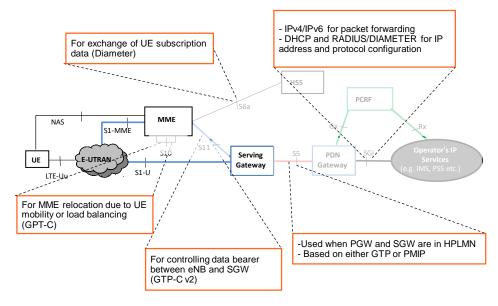
Information Elements: After Attach

http://www.netmanias.com/en/post/techdocs/6098/emm-initial-attach-Ite/emm-procedure-1initial-attach-part-1-cases-of-initial-attach


© Tarik TALEB 2020

57

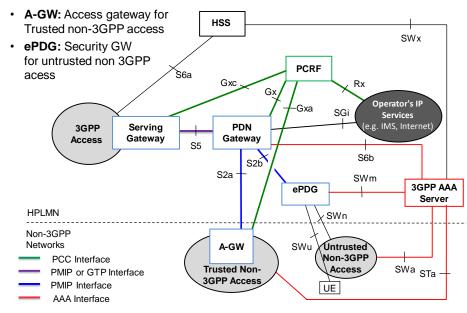
Some Nomenclature

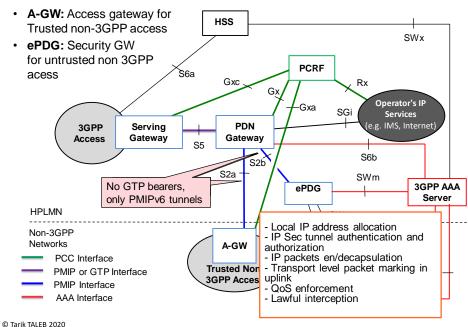

Reference Points & Protocols



© Tarik TALEB 2020

59


Reference Points & Protocols



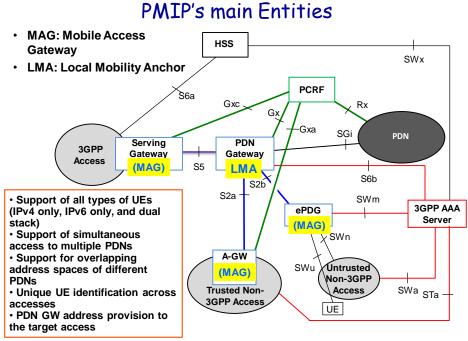
Reference Points & Protocols

[©] Tarik TALEB 2020

EPS for non-3GPP Accesses

63

Inter Access System Handover


Service Continuity Support in EPC

- Two types of Service Continuity Support:
 - Mobility support within 3GPP networks (3GPP TS 23.401)
 - Mobility support between 3GPP and non-3GPP access systems (3GPP TS 23.402)
 - Network based mobility approach
 - Proxy Mobile IPv6 (PMIPv6)
 - · Client based mobility approach
 - Dual-Stack Mobile IPv6 (DSMIPv6)

- No perceivable service interruption
- Minimized handover delay
- Efficient use of wireless resources • Wireless link could be bottleneck
- Wireless link could be bottle
 Minimized UE involvement

© Tarik TALEB 2020

© Tarik TALEB 2020

Inter-Access System Mobility Flows

Non-optimized handover flows

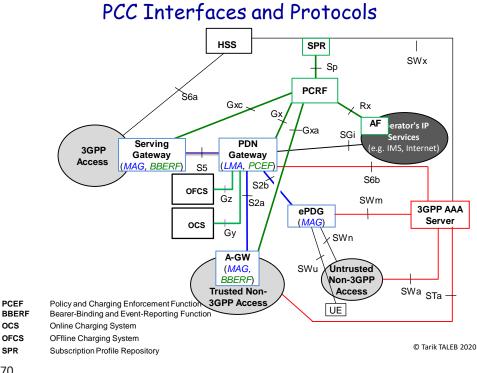
- Source network not being involved
- Suitable for dual radio capable terminals

Optimized handover flows

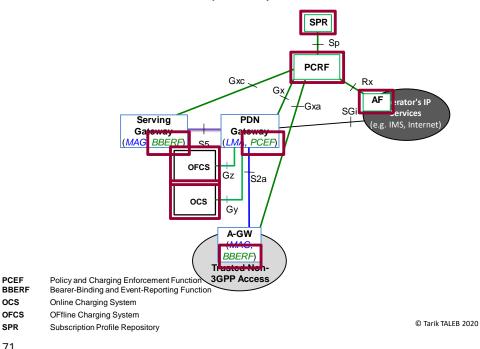
- Involving source network
- Suitable for single radio terminals
- Initially defined for mobility between CDMA2000 eHRPD and E-UTRAN

© Tarik TALEB 2020

67



Policy and Charging Control


PCC Evolution

- Background:
 - <u>Service-Based Local Policy (SBLP)</u> for resource reservation and access control within IMS
 - · Bearer-level QoS control
 - Service level access control
 - Further enhancement of SBLP in Rel. 6
 - Introduction of Flow-Based Charging (FBC) in Rel. 6
 - · Per-service charging: offline and online models
 - Per-service/content access control
 - Similarities between SBLP and FBC
 - Centralized
 - Same anchor points: AF and GGSN
 - Merging SBLP and FBC in Rel. 7 → PCC
 - Continuous enhancements of PCC in Rel. 8 and beyond
- · Objectives:
 - Support of IP services' QoS
 - Charging subscribers for used resources

© Tarik TALEB 2020

PCC Key Components

SPR 71

PCEF

ocs

OFCS

Subset of Available Parameters in the PCC Rule

Type of element	PCC rule element	Comment		
Rule identification	Rule identifier	Used between PCRF and PCEF for referencing PCC rules		
Items related to service data flow detection in PCEF	Service data flow template	List of packet filters for the detection of the service data flow		
	Precedence	Determines the order in which the service data flow templates are applied at PCEF		
Items related to policy control (i. e. gating and QoS control)	Gate status	Indicates whether a SDF may pass (gate open) or shall be discarded (gate closed)		
	QoS class identifier (QCI)	Identifier that represents the packet forwarding behavior of a flow		
	UL and DL maximum bit rates	The maximum bitrates authorized for the service data flow		
	UL and DL guaranteed bit rates	The guaranteed bitrates authorized for the service data flow		
Items related to charging control	Charging key	The charging system uses the charging key to determine the tariff to apply for the service data flow		
	Charging method	Indicates the required charging method for the PCC rule. Values: online, offline, or no charging		
	Measurement method	Indicates whether the SDF data volume, duration, combined volume/duration or event shall be measured © Tarik TALEB 20.		

PCC Architecture Types

· On-Path Model:

- without BBERF in access gateway (in case of GTP)
- QoS/bearer signaling (using GTP) on the same path as user plane

Off-Path Model:

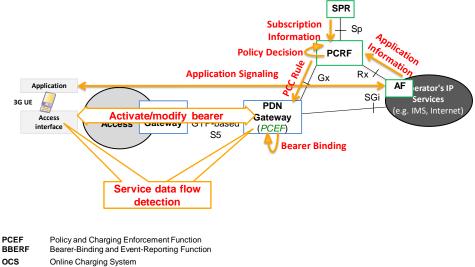
- with BBERF in access gateway (in case of PMIP)
- QoS signaling (using Gxa/Gxc) on a path different from that of user plane

© Tarik TALEB 2020

73

Basic PCC Concepts

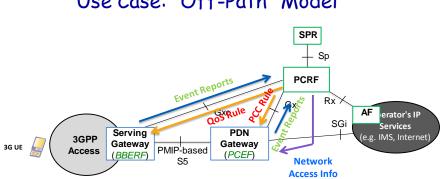
- Gating Control:
 - Blocks or allows Service Data Flows (e.g. based on indicators from AF)


QoS Control:

 Provides PCEF with authorized QoS class and bit rates for IP flows

Charging Control:

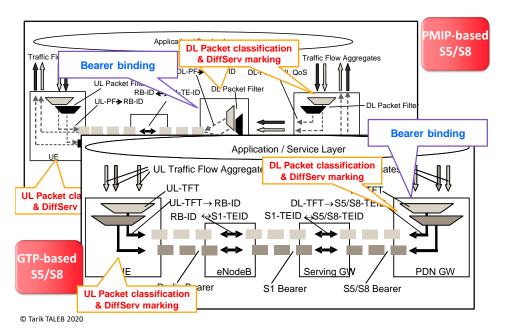
- Online charging
- Offline charging
- NO charging


Use Case: "On-Path" Model

- OFCS OFfline Charging System
- SPR Subscription Profile Repository

© Tarik TALEB 2020

75


Use Case: "Off-Path" Model

QoS and Policy Control

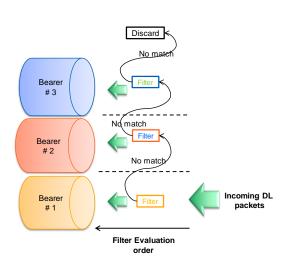
- QoS is enforced at the granularity of EPS bearers
 UE ← → PDN GW (for GTP-based EPC)
 - UE \leftarrow > Serving GW (for PMIP-based EPC)
- An EPS bearer uniquely identifies traffic flows
 - Default Bearer
 - Dedicated Bearers (for flows requiring special QoS treatment)
- EPS bearer QoS profile:
 - QCI: QoS Class Indicator
 - ARP: Allocation and Retention Priority
 - GBR: Guaranteed Bit Rate

© Tarik TALEB 2020

77

QoS over IP Transport

Bearer Binding

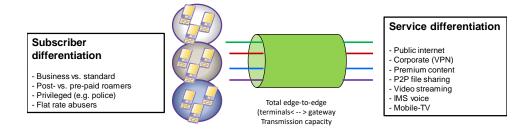

- Mapping a PCC rule to a corresponding QoS bearer
- Performed by Bearer-Binding Function (BBF)

 in PCEF for on-path model
 - in BBERF for off-path model
- Upon receiving a new or modified PCC rule, BBF first verifies whether an existing bearer can be used
 - If yes, BBF modifies bearer by adjusting bearer's bit rates
 - If not, BBF sets up a new bearer

© Tarik TALEB 2020

79

Service Data Flow Detection



QoS Control in EPS (using PCC)

81

Service/Subscriber Differentiation

EPS QoS Concept

- Bearer types
 - GBR vs. non-GBR bearers
 - Default vs. Dedicated Bearers

QoS Parameters

- QCI: QoS Class Indicator
 - 1 to 9:
 - QCI = 1 → Resource Type = GBR, Priority = 2, Packet Delay Budget = 100ms, Packet Error Loss Rate = 10-2, Example Service = Voice
 - QCI = 9 → Resource Type = Non-GBR, Priority = 9, Packet Delay Budget = 300ms, Packet Error Loss Rate = 10-6, Example Service = Internet
- ARP: Allocation and Retention Priority
 - In 4G, ARP priority level (PL) values range from 1 through 15, where 1 corresponds to the highest priority and 15 corresponds to the lowest priority.
 - · Used to accept or reject a bearer request, when resources are limited
- MBR: Maximum Bit Rates
- GBR: Guaranteed Bit Rate
- QoS Mechanisms
 - Control Plane Signaling Procedures
 - User Plane Functions
 - Packet-Flow-Level Functions
 - Bearer-Level Functions
- DSCP-Level Functions © Tarik TALEB 2020

DSCP

Differentiated Service Code Point

83

Bearer Types

- Guaranteed bit-rate (GBR) bearer:
 - Established "on demand"
 - No congestion due packet losses
 - Suitable for services tolerating "service blocking over service dropping"

Non-GBR bearer:

- No resources blocked
- May experience packet losses

• Default bearer:

- One default bearer per terminal IP address
- For basic connectivity.
- non-GBR
- QoS level depending on subscription data
- Not associated with any specific packet filter

• Dedicated bearer:

- Either non-GBR or GBR
- Packet flows mapping onto dedicated bearers based on operator policies

QoS Parameters

QoS Class Identifier (QCI):

a reference to node-specific pre-configured parameters that control
packet-forwarding treatment at the user plane

Allocation and Retention Priority (ARP)

Specifies control plane treatment for bearers

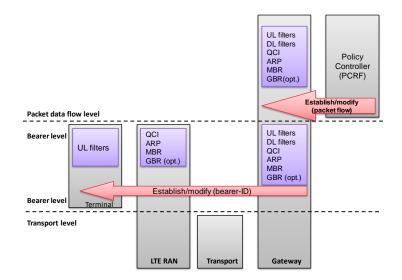
Maximum Bit Rate (MBR)

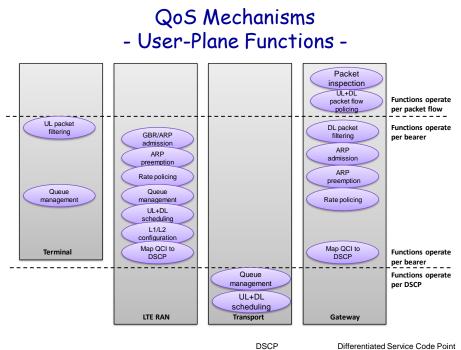
- Bit rate traffic on a bearer may not exceed

Guaranteed Bit Rate (GBR)

Bit rate that the network guarantees for a bearer

Aggregate Maximum Bit Rate (AMBR):

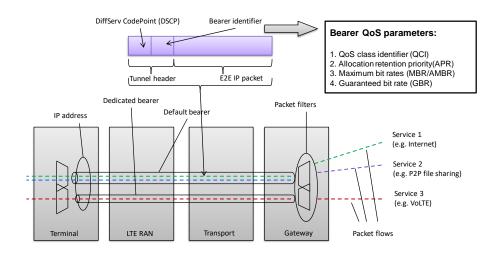

 Limit to the total amount of bit rates consumed by a single subscriber (excluding GBR bearers)

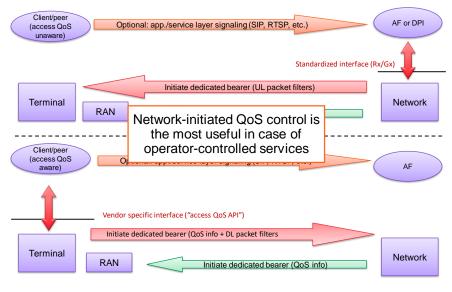

- UL/DL APN-AMBR: defined per subscriber and APN and known only to the gateway
- UL/DL Terminal-AMBR: defined per subscriber and known by both the gateway and RAN

© Tarik TALEB 2020

85

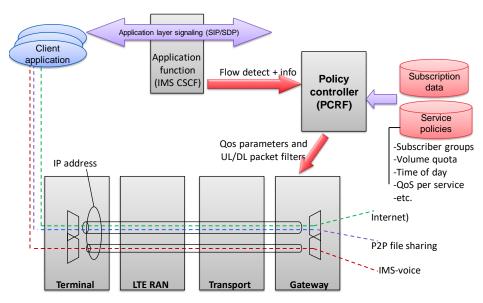
QoS Mechanisms - Control Plane Signaling Procedures -




© Tarik TALEB 2020

87

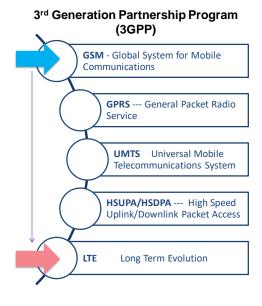
DSCP vs QCI


Dedicated Bearer Establishment: Network- vs. Terminal-initiated

© Tarik TALEB 2020

89

Summing Up All: E2E Use Case



Security: Authentication

91

Authentication Evolution from GSM to LTE

Authentication in brief

- · Authentication
 - Establishing or confirming something (or someone) as authentic
 - <u>Mutual authentication</u>, means network authenticates the user and the user authenticates the network
- · An important security function
 - Authorization
 - Integrity protection
 - Replay protection
 - Privacy
 - etc

TS 33.401 – LTE Security TS 33.102 – 3G Security

© Tarik TALEB 2020

93

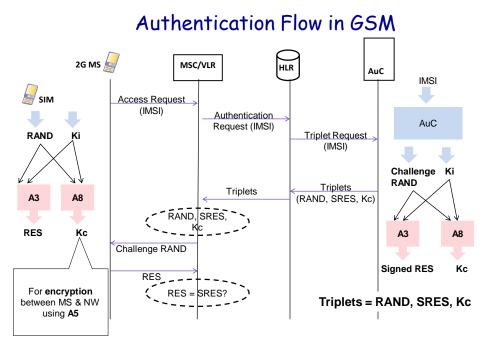
User Authentication

- PIN Personal Identification Number
- PUK PIN Unlocked Key or PUC (Personal Unlock Code)

LTE UE Identifiers

- UE
 - IMEI or MEID Mobile Equipment Identifier
 - Globally unique number identifying a physical piece of mobile station
 equipment
 - MEID allows hexadecimal digits while IMEI (Int'l Mobile Station Equipment Identity) allows only decimal digits
 - Only sent to MME (in NAS), not to eNB.
 - Sent only after NAS security is setup (i.e, encrypted and integrity protected).
- SIM (Subscriber Identity Module)
 - HD: Universal Integrated Circuit Card (UICC)
 - SW: USIM Universal Subscriber Identity Module
 - IMSI
 - Seldom sent over the air (only during attach, if no other valid temporary ID is present in the UE).
 - Temporary identities used instead (S-TMSI, GUTI)
 - Brought, among other things, security improvements (e.g., mutual authentication, longer encryption keys, etc)

© Tarik TALEB 2020

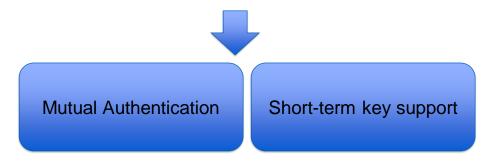

S-TMSI System architecture evolution Temporary Mobile Subscriber Identity GUTI Globally Unique Temporary Identity

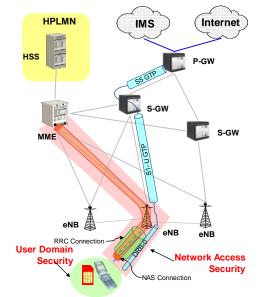
95

GSM Mobile Station

- Mobile Equipment (ME)
 - Physical mobile device
 - Identifiers
 - IMEI International Mobile Equipment Identity
- Subscriber Identity Module (SIM)
 - Smart Card containing keys, identifiers and algorithms
 - Identifiers
 - K_i Subscriber Authentication Key
 - IMSI International Mobile Subscriber Identity
 - TMSI Temporary Mobile Subscriber Identity
 - MSISDN Mobile Station International Service Digital Network
 - Authentication Algorithms (A3, A8)
 - Stream Ciphering/Encryption Algorithm (A5)
 - PIN Personal Identity Number protecting a SIM

© Tarik TALEB 2020 • Others




© Tarik TALEB 2020

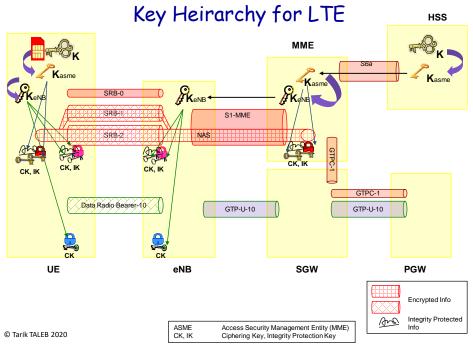
97

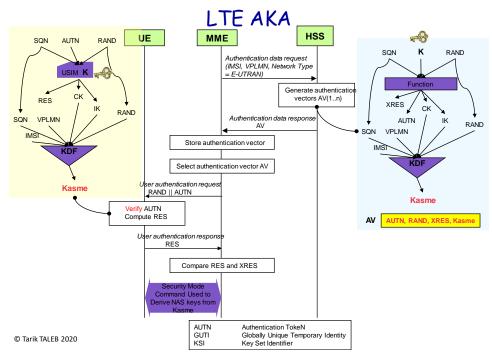
GSM Authentication Principle

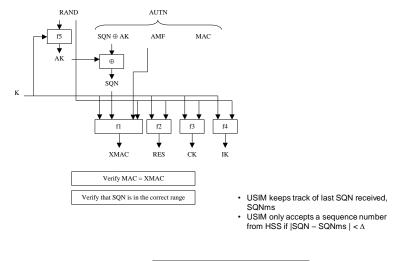
Challenge/response-based one-way authentication using long-term shared key between user's SIM card and NW

Overall Architecture of Evolved Packet System

© Tarik TALEB 2020

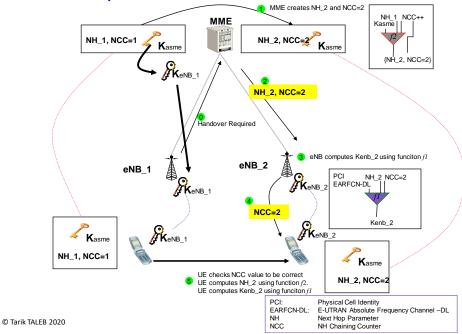

99

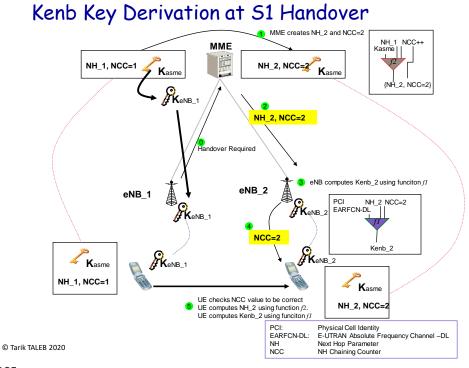

LTE User Equipment

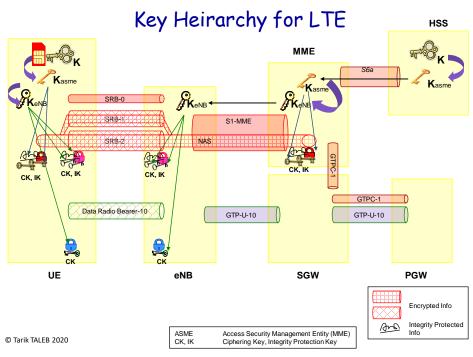

- UE
 - IMEI or MEID Mobile Equipment Identifier
 - Globally unique number identifying a physical piece of mobile station equipment
 - MEID allows hexadecimal digits while IMEI (Int'l Mobile Station Equipment Identity) allows only decimal digits
- SIM
 - HD: Universal Integrated Circuit Card (UICC)
 - SW: USIM Universal Subscriber Identity Module
 - IMSI
 - Seldom sent over the air (only during attach, if no other valid temporary ID is present in the UE).
 - Temporary identities used instead (S-TMSI, GUTI)
 - Brought, among other things, security improvements (e.g., mutual authentication, longer encryption keys, etc)

```
© Tarik TALEB 2020
```

S-TMSI System architecture evolution Temporary Mobile Subscriber Identity GUTI Globally Unique Temporary Identity

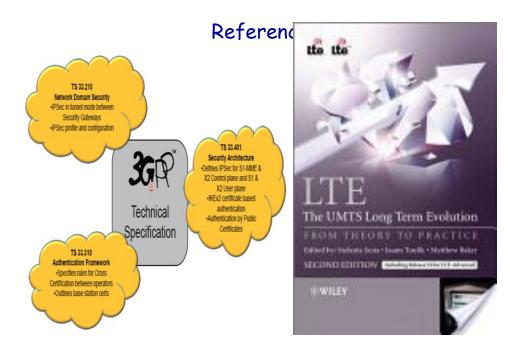

User authentication function in the USIM




© Tarik TALEB 2020

103

Kenb Key Derivation at S1 Handover



Summary

- Authentication in GSM
 - Challenge response based
 - One-way
 - Long term key
- Authentication in LTE (EPS)
 - Challenge-response based
 - Mutual authentication
 - Hierarchical involving many NW nodes (HSS, MME, and eNB)
 - Dynamic key derivation

```
© Tarik TALEB 2020
```


Specifications

- TS 33.401 LTE Security
- TS 33.102 3G Security

109

Summary - Part I

- Migration scenarios from legacy NWs to EPS
- LTE Requirements & History
- EPS Architecture, Components, and Protocols