

Lecture 6: Evolved RAN (5G NR)

ELEC-E7230 Mobile Communications Systems

Edward Mutafungwa, 5th October 2020 Department of Communications and Networking

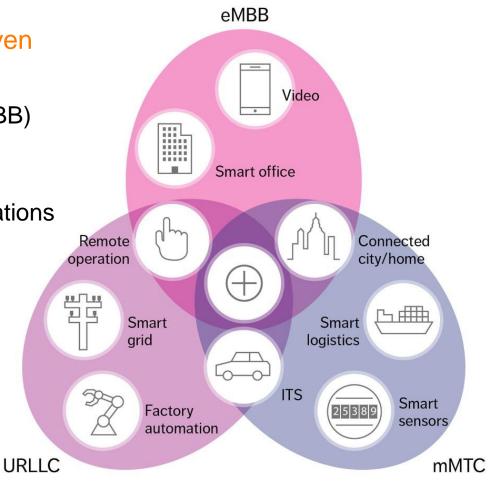
Outline

- 5G NR (Release 15)
 - Requirements and drivers
 - Spectrum enhancements
 - Numerology/frame structure
 - Key RAN enhancements (massive MIMO focus)
 - Architecture
 - Future developments

5G NR Requirements

Release	Rel.13	Rel.14	Rel.15	Rel.16	Rel.17
Freeze date	3/2016	3/2017	9/2018 (early drop) 4/2019 (late drop)	7/2020	TBC (Covid uncertainties)
Comment	LTE-A Pro		5G NR		

- Rel.13 and 14 = LTE-A Pro ("pre-5G")
- Rel.15: Specs for 5G New Radio (NR) start to appear
 - 5G NR Non-Standalone (NSA) operation → "early drop" due to demand from operators
 - 5G NR Standalone (SA) operation
- Rel. 15 also includes work items continuing LTE enhancements (e.g. 1024 QAM)! (*not covered in this course*)
- Rel.16 continues enhancements to 5G NR → recently frozen but only brief overview in this lecture
- Work on Rel. 17 started earlier this year, but progress impacted by Covid-19 disruptions


5G Requirements

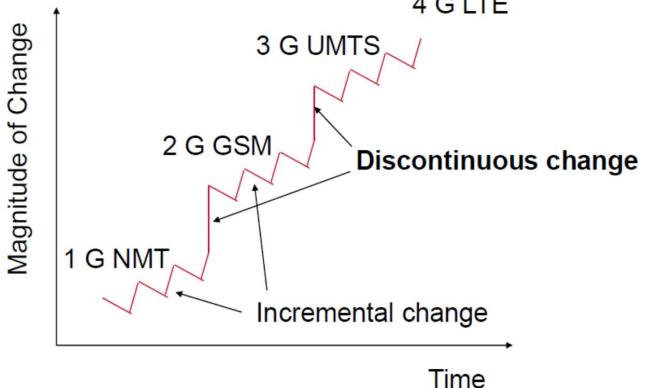
- Recall that in 1990s ITU IMT-2000 set requirements for 3G mobile broadband
- ITU IMT-Advanced in 2008 provided requirements which where targeted by LTE-Advanced
- ITU IMT-2020 specified in 2017 provides requirements targeted by 5G
 - Submission of 5G standard by 3GPP to ITU done in 2020
 - <u>https://techblog.comsoc.org/2020/07/14/executive-summary-imt-</u> 2020-specs-defined-submission-status-and-3gpps-ritsubmissions-2/

5G Requirements

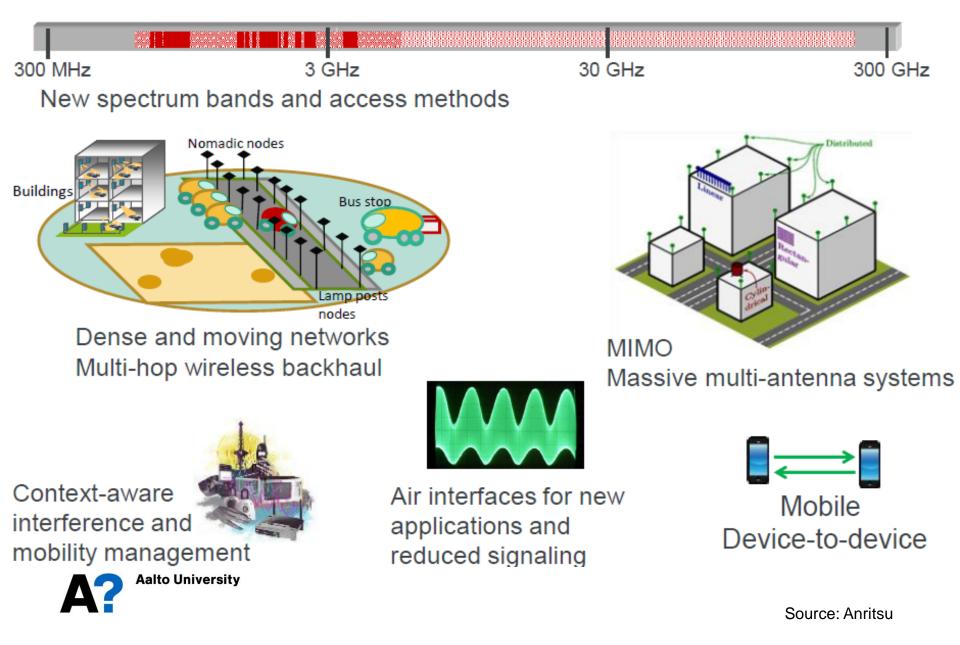
- 5G requirements are use case driven
- 5G main use cases
 - Enhanced mobile broadband (eMBB)
 - Ultra-reliable low latency communications (URLLC)
 - Massive machine type communications (mMTC)
- Release 15 focused heavily on eMBB enhancements
 - Also focus of this lecture

Source: Ericsson

5G Requirements

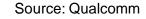

- Use case driven targets
 - Peak rate: 20 Gbps (1 Gbps in LTE-A)
 - Cell edge user experienced throughput (5th percentile): DL 100 Mbps, UL 50 Mbps
 - Latency: Maximum 1 ms RTT delay for URLLC (10 ms in LTE Rel.8)
 - Connection density: 1 million connected devices per km²
 - Service availability: 99.999%

		LTE Rel.8	LTE-A target	5G (IMT-2020)
Peak data rate	DL	150/300 Mbps	1 Gbps	20 Gbps
	UL	75 Mbps	500 Mbps	10 Gbps
Peak spectral	DL	15 bps/Hz	30 bps/Hz	30 bps/Hz
efficiency	UL	3.75 bps/Hz	15 bps/Hz	15 bps/Hz


Why 5G NR?

- Evolution of LTE is constrained by need for maintaining tight backward compatibility
 - \rightarrow only incremental improvements (LTE-A, LTE-A Pro)
- Specification of new generation (4G→5G) provides opportunity for fresh start
 4 G LTE

Technology Enhancements for 5G NR


5G NR Spectrum Aspects

5G NR Frequency Bands

 5G NR frequency bands roughly categorized in Frequency Ranges (FR) in 3GPP Rel. 15

3GPP frequency range designation	Corresponding frequency range
FR1	450-6000 MHz
FR2	24250-52600 MHz

- Low bands of FR1 (below 1 GHz)
 - Provides wide coverage in rural areas or deep in-building coverage urban/suburban scenarios
- Rest of FR1 (1-6 GHz)
 - Offers good mixture of coverage and capacity benefits
- FR2 high bands (above 24 GHz)
 - Provides high capacities for extreme broadband use cases
 - Limited coverage → relatively more suited for small cell deployments

5G NR Duplexing arrangement

- Low and mid bands operate in TDD or FDD
- High bands will be TDD

3GPP freq. range	Corresponding frequency range	Duplexing in different bands
FR1	450-6000 MHz	FDD or TDD
FR2	24250-52600 MHz	TDD

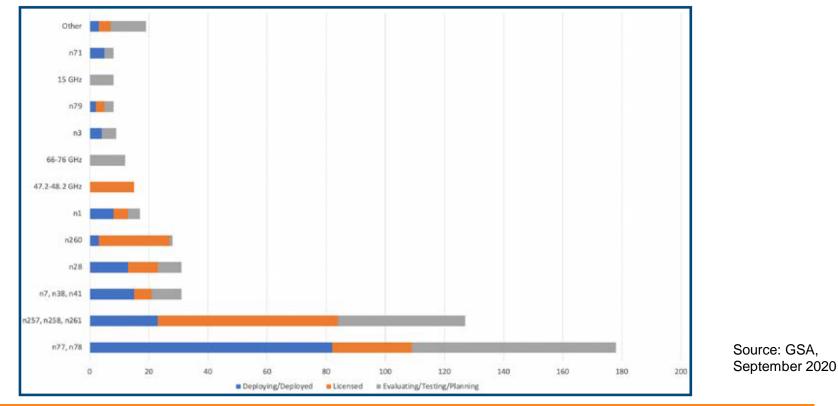
Table 3: FR2 bands


NR operating band	Uplink (UL) and downlink (DL)	Duplex mode
n257	26500–29500 MHz	TDD
n258	24250-27500 MHz	TDD
n260	37000-40000 MHz	TDD
n261	27500-28350 MHz	TDD

Source: GSA, 2018

5G NR Frequency Bands

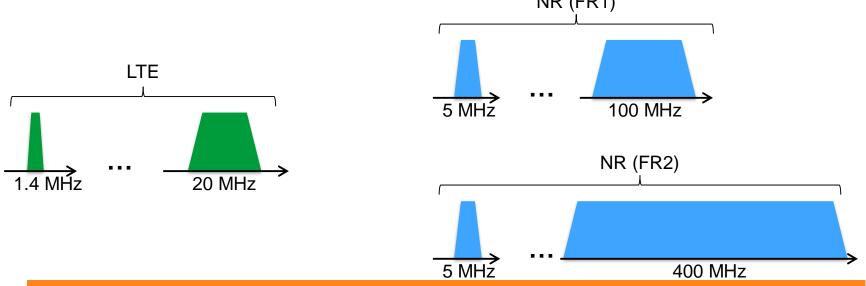
- Both licensed and unlicensed bands considered in various regions
 - Regional variations noted


Source: Qualcomm

5G NR Frequency Bands

 5G spectrum licenses mostly in mid bands particularly 3.5 GHz bands (n77, n78) and 26-28 GHz bands (n257, n258, n261)

Figure 1: Count of operators investing in 5G spectrum bands

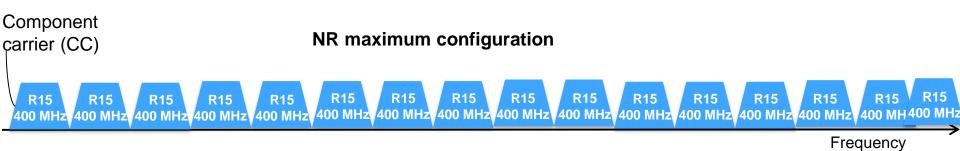


Source: Qualcomm

5G NR Carrier Bandwidths

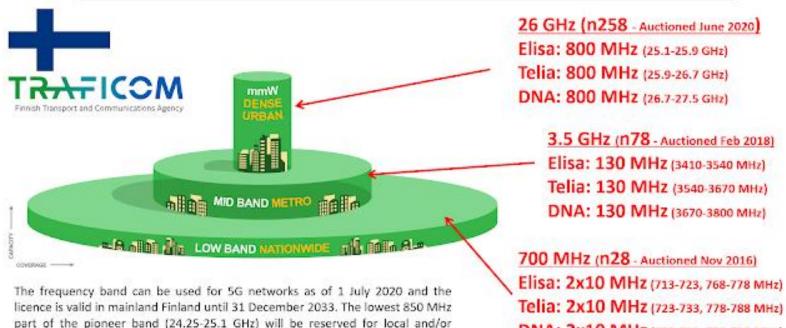
- LTE
 - Minimum carrier bandwidth 1.4 MHz to facilitate migration of 2G bands to LTE
- NR
 - Minimum carrier bandwidth 5 MHz to enable future migration of LTE to 5G NR
 - Wider bandwidths (up to 400 MHz in high bands) for very high rate services
 NR (FR1)

5G NR Carrier Bandwidths


- Use of wider bandwidths in NR more efficient that aggregated LTE carriers
 - Less common channel overhead
 - Reduced wastage of resources for guard bands between adjacent carriers (e.g. a 20 MHz LTE component carrier may use up to 2 MHz on guard bands)

5G NR Carrier Aggregation

- 5G NR Carrier Aggregation allows combining up to 16
 5G NR component carriers (16x400 MHz = 6.4 GHz)
 - In practice it is still challenging to identify bands with such spectrum resources

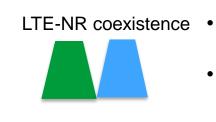


5G NR Carrier Bandwidths

regional vertical players and research & development or educational usage.

- Low/mid/high-band 5G spectrum allocations in Finland
 - Some local test licenses also provided (e.g. Aalto holds a license for 60 MHz spectrum in these bands for Aalto 5G test network)

Finland 5G mmWave Frequency Auction – June 2020


DNA: 2x10 MHz (703-713, 758-768 MHz)

0304

Migration or Coexistence of LTE and NR

 A number of potential scenarios for spectrum allocation when migrating to (or coexisting with) NR

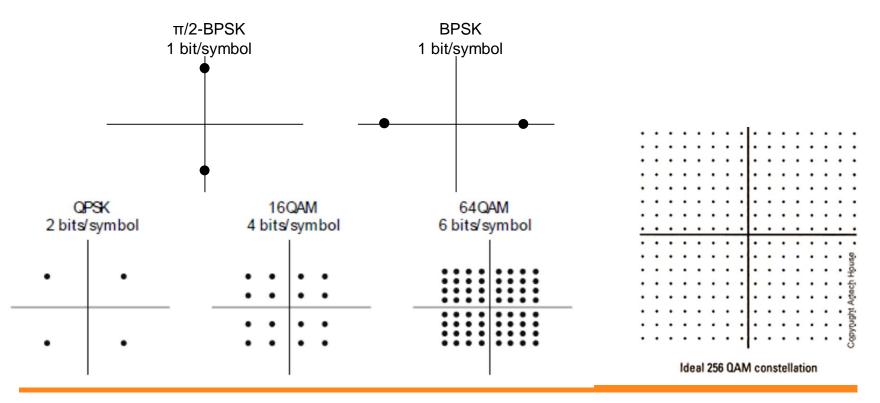
- Split spectrum and maintain separate carriers between LTE and NR
- Simple implementation for coexistence but capacity limited and suboptimal load balancing

LTE-NR coexistence .

NR only

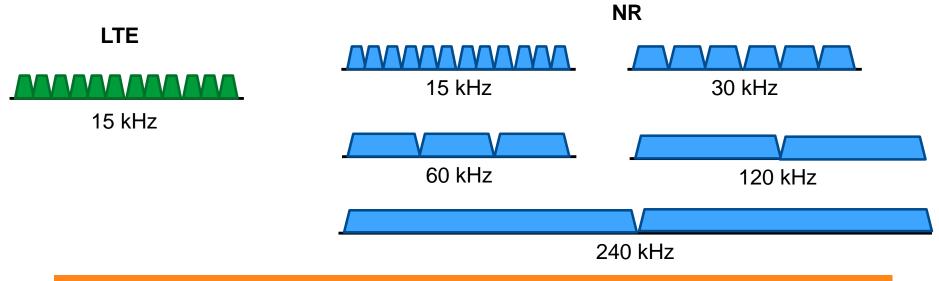
- Dynamic sharing of spectrum between LTE and NR due commonalities in frame structure
- Allows load to balanced according to evolving NR adoption trends
- Complete refarming of LTE spectrum to NR
- Long term solution when operator see no need to continue supporting LTE UEs

5G NR Numerology


5G NR Multiple Access Schemes

- LTE
 - OFDM in downlink
 - SC-FDMA in uplink
- 5G NR
 - OFDM in downlink
 - Either OFDM or DFT spread OFDM (DFT-s-OFDM) in uplink
 - DFT = Discrete Fourier Transform
 - Essentially DFT-s-OFDM is same as SC-FDMA and motivation for use is the same (→ reduce PAPR for improved device power efficiency or battery life)

NR Modulation


- In NR, π/2-BPSK, BPSK, QPSK, 16-QAM, 64-QAM and 256-QAM modulations are supported for the user plane channels
 - π/2-BPSK introduced in UL as scheme for enhanced power-amplifier efficiency (low PAPR) at lower data rates (e.g. for mMTC devices)
 - BPSK introduced for one format of the uplink control channel

5G NR Numerology

- LTE
 - Single numerology → 15 kHz subcarrier spacing (which in turn fixes durations of OFDM symbols, slots etc.)
- 5G NR
 - Flexible numerology with different subcarrier spacing possible (2^µ×15 kHz)
 → 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz
 - Symbol lengths is also scaled accordingly → wider spacing results in shorter symbol durations

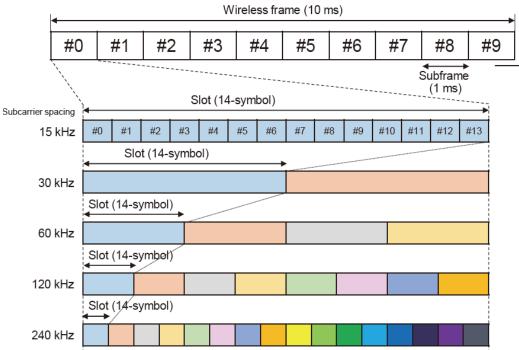

5G NR Numerology

- Lower numerology preferred in low and mid bands (FR1)
 - To support larger cell areas (more delay spread tolerated) → same motivation we had with LTE
- Higher numerology preferred in high bands (FR2)
 - Needed in high bands because Doppler spread (spectral broadening) is higher and frequency/phase errors more severe → interference between subcarriers
 - Shorter symbol durations desirable for low latency applications

3GPP freq. range	Corresponding frequency range	Numerology (subcarrier spacing)
FR1	450-6000 MHz	15 kHz, 30 kHz, 60 kHz
FR2	24250-52600 MHz	60 kHz, 120 kHz, 240 kHz

$$f_m = \frac{\nu f_c}{c} \qquad \begin{array}{l} f_m = \text{Doppler spread} \\ f_c = \text{Carrier frequency} \\ c = \text{Speed of light} \\ \nu = \text{Moving speed} \end{array}$$

Doppler spread



5G NR Radio Frame Structure

Attributes	LTE radio frame	NR radio frame
Frame length	10 ms	10 ms
Subframe length	1 ms	1 ms
Slots per subframe	Fixed number of slots in subframe: 2 slots each 0.5 ms	Slot number of varies with numerology: If $\Delta f = 15$ kHz, 1 slot of 1 ms If $\Delta f = 30$ kHz, 2 slots each 0.5 ms If $\Delta f = 60$ kHz, 4 slots each 0.25 ms If $\Delta f = 120$ kHz, 8 slots each 0.125 ms If $\Delta f = 240$ kHz, 16 slots each 0.0625 ms
OFDM symbols per slot	7 symbols per slot (normal CP) 6 symbols per slot (extended CP)	Standard slot: 14 symbols per slot (normal CP), 12 symbols per slot (extended CP) Mini slots: 7, 4 or 2 symbols per slot
OFDM symbol duration	Fixed at 66.67 µs (= 1/15 kHz)	Duration varies with numerology: = $1/\Delta f$
Cyclic Prefix (CP) duration	4.7 μs 5.2 μs (normal CP) 16.7 μs (extended CP)	Duration varies with numerology: = 4.7 μ s / m whereby $\Delta f = 2^m$ x 15 kHz

5G NR Radio Frame Structure

Normal cyclic prefix

Time

Subcarrier spacing [kHz]	No. of symbols per slot		
15	14	1	10
30	14	2	10
60) 14 4		10
120	14	8	10

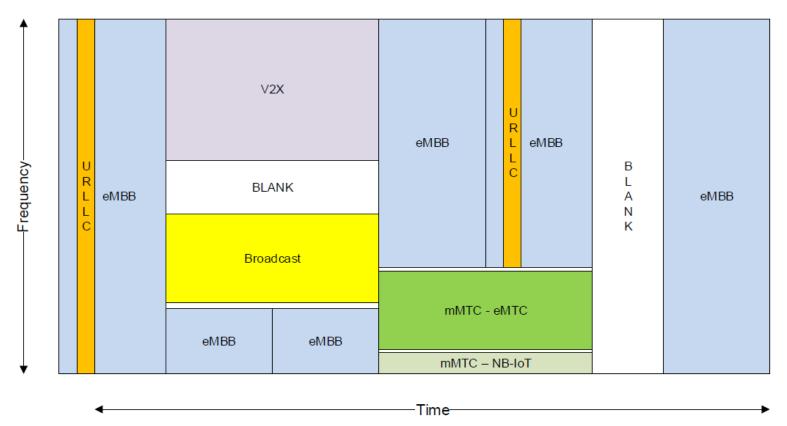
Extended cyclic prefix

Subcarrier	No. of symbols	No. of slots	No. of subframes	
interval [kHz]	per slot	per subframe	per frame	
60	12	4	10	

Source: NTT Docomo technical journal, Jan 2019

CP: Cyclic Prefix Δf : Subcarrier spacing

5G NR Radio Frame Structure


- Recall 5G NR specifies mini slots of 7, 4 or 2 symbols per slot
- Mini slot transmissions may begin any time (immediately) within a standard slot → no need to wait for the beginning of the standard slot
 - Contributes to reduced latency for URLLC
 - Enables fast retransmission in case of errors \rightarrow enhances reliability

1 slot (with 14 symbols)												
											-	
				1 1	mini	slot ◀──	(with	i 2 sy	/mb	ols)		

5G NR Physical Resources

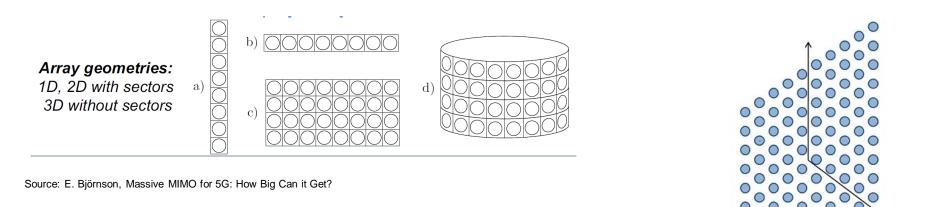
- Flexible numerology in NR provides framework for more effective support of different services and QoS requirements
 - Flexible radio resource allocation in time-frequency grid

Aalto University

Source: Nokia, 2017

Massive MIMO Enhancements

Massive MIMO for 5G NR

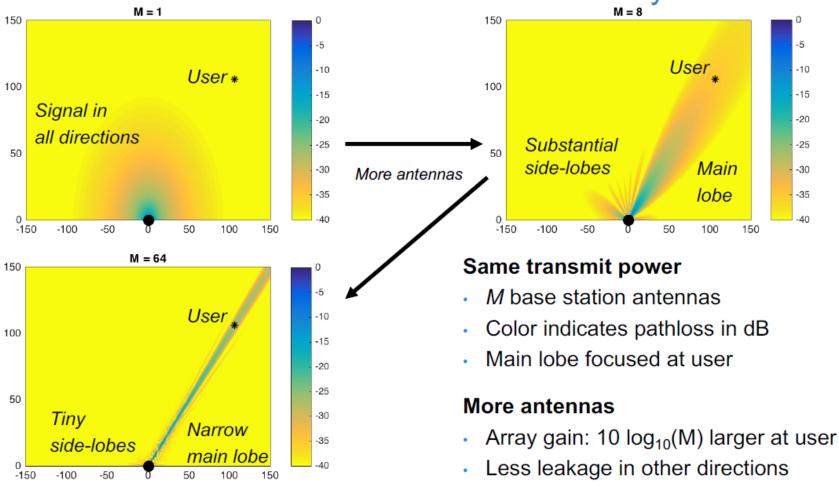

• Extension of the MIMO configurations to antenna arrays with large number of controllable antennas (16 or more antenna ports in NR)

3GPP freq. range	Corresponding frequency range	Need and benefit for Massive MIMO
FR1	450-6000 MHz	 Interference-limited (SINR limit) Spectrum scarcity (capacity limitation) Benefit: Improved spectral efficiency
FR2	24250-52600 MHz	 High path loss (coverage-limited) Stringent line-of-sight requirements Benefit: Beamforming increases signal strength by focusing to individual UEs

Massive MIMO for 5G NR

- Antenna array technologies have become more technically and commercially feasible
 - Antenna array size decreases with increased carrier frequency e.g. antenna arrays in FR2 frequencies could be a hundredth of corresponding FR1 array
 - More antennas enables increased directivity (see example in next slide)

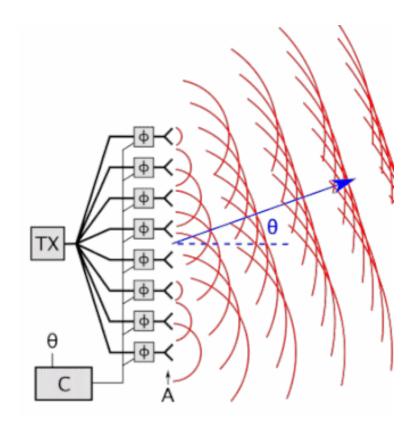
Source: Mathworks


1/2 wavelength spacing

1/2 wavelength spacing

Massive MIMO for 5G NR

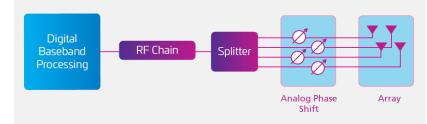
More Antennas → More Directivity



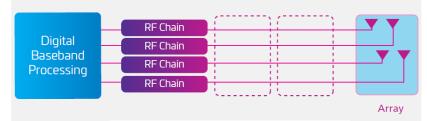
Source: E. Björnson, Massive MIMO for 5G: How Big Can it Get?

Beamforming basics

- Phase shifting operation applied on different antenna elements in an array allows to point or steer beam towards target users
 - Constructive/destructive combination of individual beams
- Each antenna element in an array has its own radiation pattern but overall beamforming effect of entire array depends on the:
 - Array size
 - Antenna element spacing
 - Antenna elements' signal phase shifts and amplitude variation

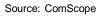


Source: ComScope



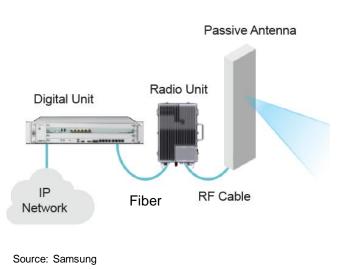
Beamforming basics

- Three possible ways of implementing beamformers (phase shifters)
- Analog beamforming
 - Uses a single common RF source split among multiple antenna elements.
 - The beam is controlled by adjusting analog phase shifters along the RF path
- Digital beamforming
 - Each antenna has a dedicated RF signal and path.
 - Phases and amplitudes are digitally controlled by baseband processing.
 - Provides the best beam control ©
 - High power consumption and signaling overheads due to many RF chains ☺
- Hybrid beamforming
 - Combines features of analog and digital beamforming.
 - Digitally controlled RF chains, splitters and analog phase shifters.


Analog beamforming

Digital beamforming

Hybrid beamforming


Passive vs Active Antennas

Passive antennas

- RF electronics deployed in separate box
- Need to have separate RF cables for each antenna port
- Number of cables increases with MIMO antenna ports → more bulky, many failure points etc. ☺

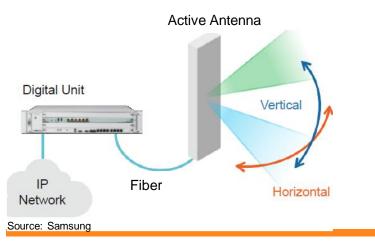
0

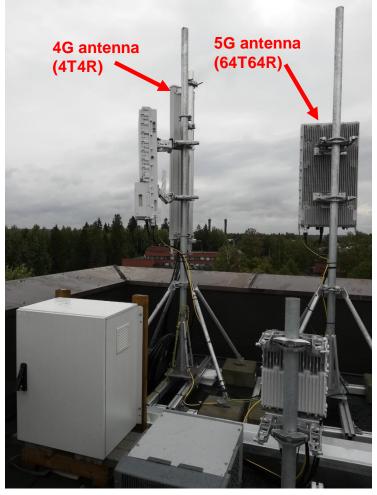
0

0

0

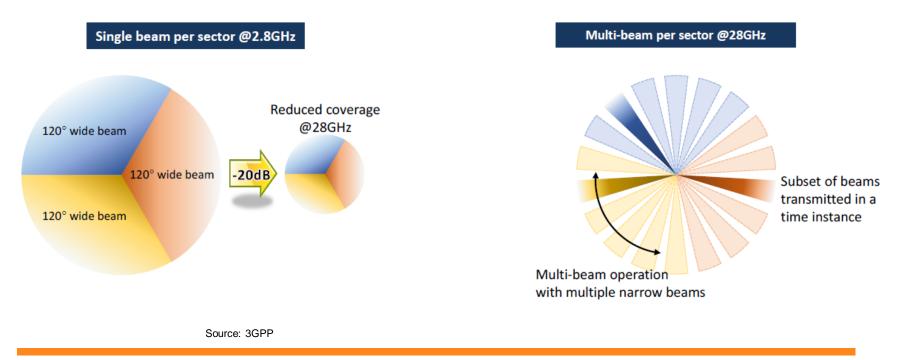
0




Source: ComScope

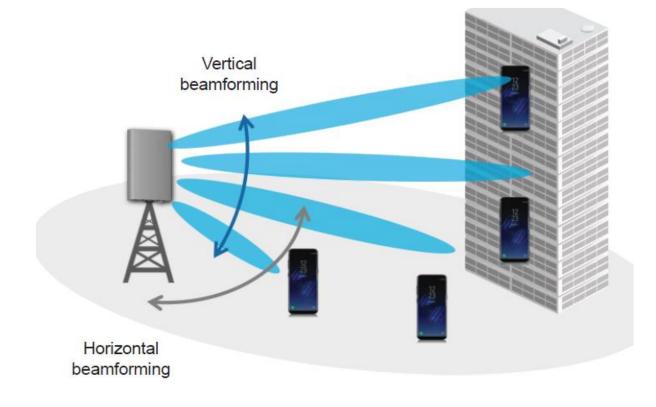
Passive vs Active Antennas

- Active antennas
 - RF electronics and antenna integrated in the same box
 - Eliminates need for multiple cables between radio unit and antenna
 - Simplifies installation and enhances reliability [©]
 - Provides scalability for massive MIMO antenna implementation ☺
 - Suitable for FR2 operation as it reduces RF losses incurred at those frequencies ©



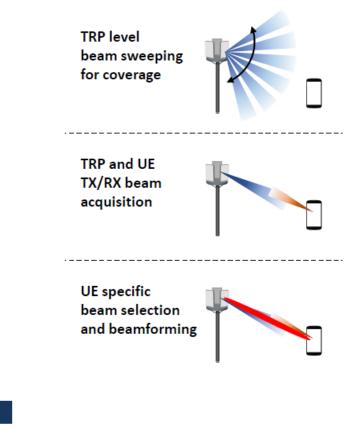
64T64R antenna from Nokia deployed at the top of Våre building in Otaniemi (Aalto 5G test network)

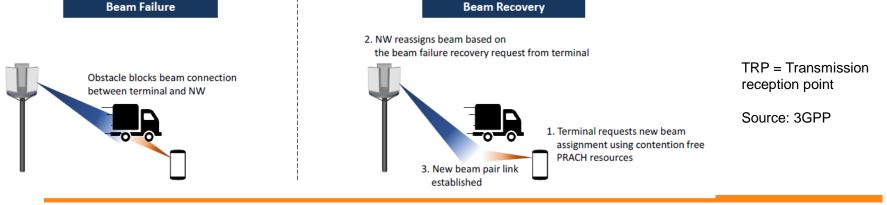
Multi-beam operation


- A single beam can be used to provide wide coverage lower frequencies
 - Typical deployment scenario of LTE trisector sites
- For higher frequencies, multiple beams can be used to extend coverage

Multi-beam operation

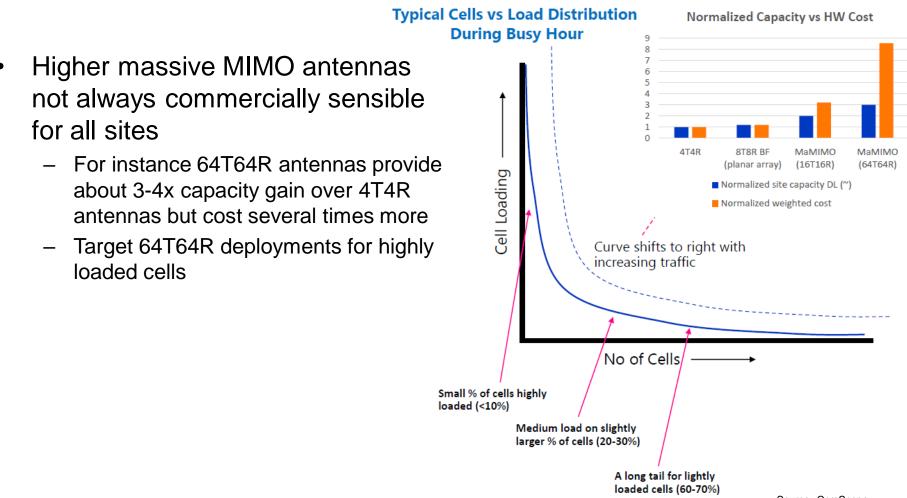
- Beamforming in 3D (both horizontal and vertical beamforming)
 - Also referred to a full-dimension MIMO




Source: Ovum

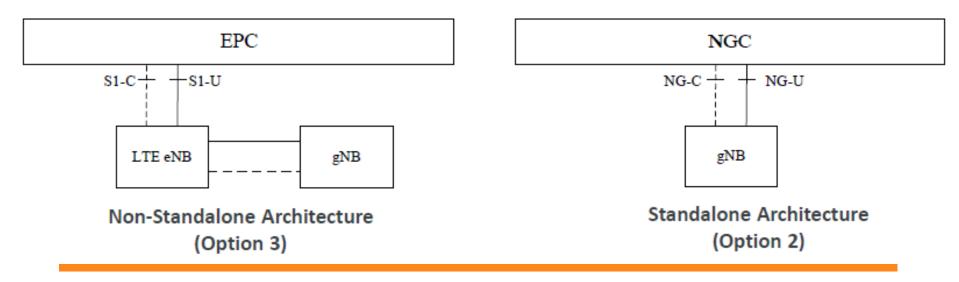
Beam Management

- 5G NR specifications include new PHY and MAC layer procedures to support directional communications
- In 3GPP terminology, these procedures are referred to as beam management
- Beam management includes a number of distinct operations
 - Beam sweeping, beam acquisition, beamforming, beam reporting, beam recovery etc.



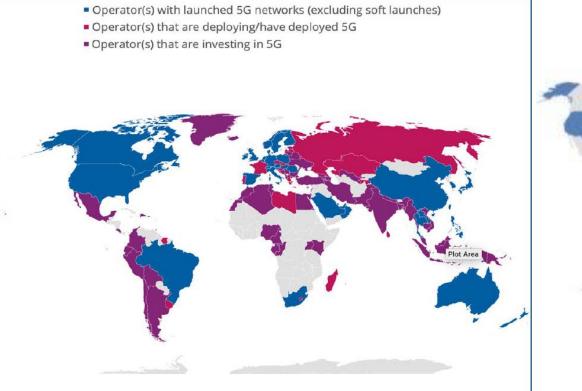
Techno-economical consideratons

Aalto University



Source: ComScope

- 5G radio access network is formally referred to as Next Generation RAN (NG-RAN) in specs
- NG-RAN main component is next-generation Node B (gNB)
 - Essentially the 5G base station
- The functionalities provided by the gNB, include (but are not limited to):
 - Radio Resource Management (scheduling, admission control, radio bearer control, etc.);
 - IP and Ethernet header compression, encryption and integrity protection of data;
 - Connection setup and release;
 - Support of Network Slicing;
 - QoS Flow management and mapping to data radio bearers;
 - Radio access network sharing;
 - Dual Connectivity (with other gNB, eNB or non-3GPP access nodes).

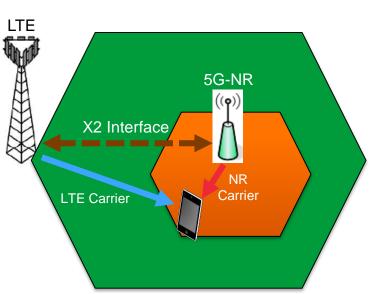

- Non-standalone architecture (NSA)
 - NR uses existing LTE RAN (eNB) and core (EPC) → Control plane functionality remains anchored in LTE
 - 5G-NR provides a complementary user plane capacity via gNB
 - Allows operator to make early 5G NR deployments
- Standalone architecture (SA)
 - 5G NR base stations (gNBs) operate independently with new 5G core network (Next Generation Core, NGC)

- By September 2020 397 operators in 129 countries were investing in 5G
 - Majority of of those are for 5G NSA
 - GSA has identified 47 operators in 24 countries investing in 5G SA networks

Figure 3: Map of global operator investments in 5G

Countries with 5G SA network investments

Source: GSA



Dual Connectivity

 Possible deployment scenarios with non-standalone architecture → LTE/NR dual connectivity

LTE/NR

Referred to as EN-DC (E-UTRA-NR Dual Connectivity) in 3GPP specs

Heterogeneous deployment

- LTE macro cell and NR small cell
- LTE connection provides redundancy when UE out of NR coverage

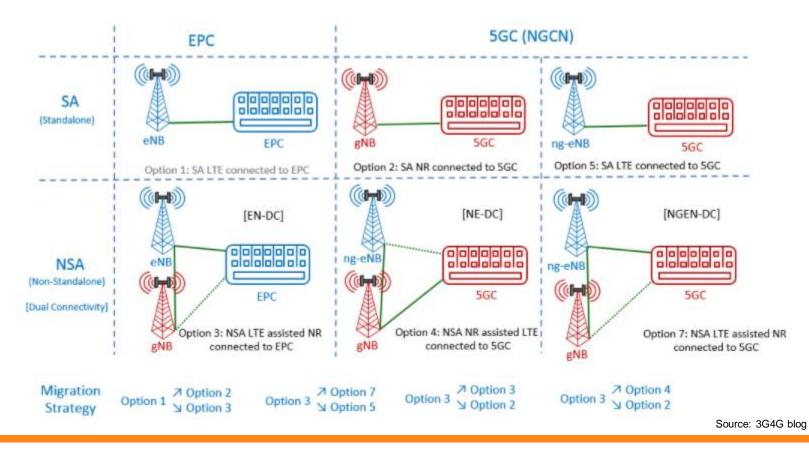
LTE-NR co-sited deployment

NR Carrier

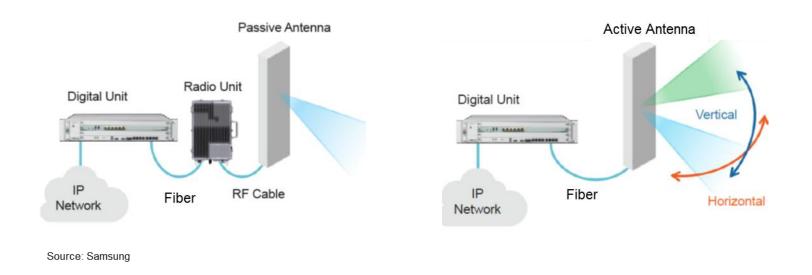
LTE Carrier

 Migrational approach allowing continue service to LTE only UEs

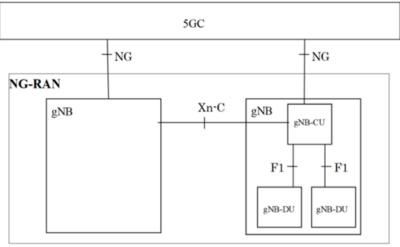
LTE-only coverage


LTE/NR coverage

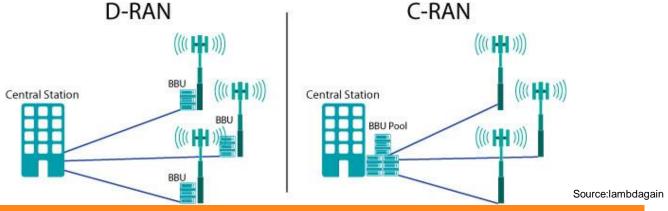
 If high band NR, dual connectivity not available in cell edge


Dual Connectivity

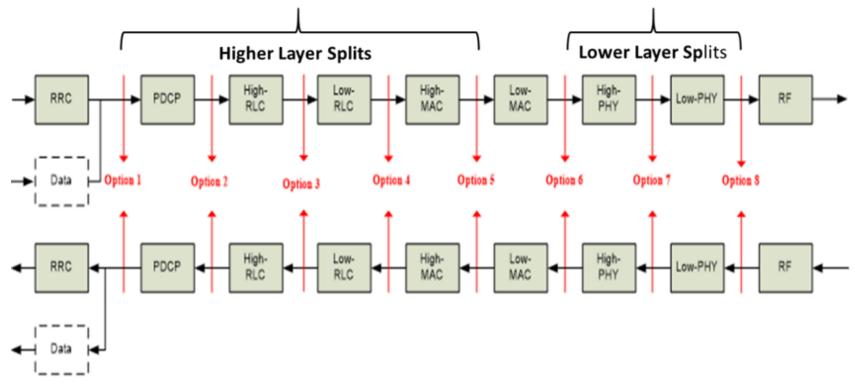
- Introduction of 5GC (NGC) platforms presents more dual connectivity options and migration strategies from 4G to 5G
 - Note: Next generation eNB = ng-eNB
 - NR-DC (NR-NR Dual Connectivity) also possible but not shown in figure below



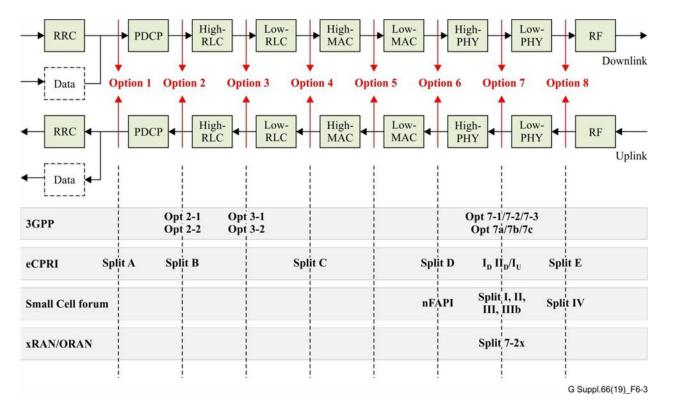
- Digital baseband processing carried out in baseband unit (BBU) typically deployed at bottom of tower or at another appropriately sheltered location
- Separation of RF and baseband functionally allows for
 - More reduced footprint on the tower and in the shelter
 - Enhancing network performance usually through high-capacity fiber connectivity between the two
- For legacy deployments the BBU serves only particular base station



- NG-RAN architecture introduces possibility of disaggregating the baseband processing in gNB so it can be implemented in collocated or geographically separate units
 - Centralised Unit (CU): usually hosts the higher layer RRC and PDCP functions (referred to as gNB-CU in 3GPP)
 - Distributed Unit (DU): hosts the lower layer RLC, MAC and the PHY functions (referred to as gNB-DU in 3GPP)
 - Radio Unit (RU): does the RF processing (aka RRH remote radio head, or RRU, remote radio unit). May be part of DU or deployed separately.
- Multiple RUs connect to a DU, and multiple DUs connected to a centralized unit CU

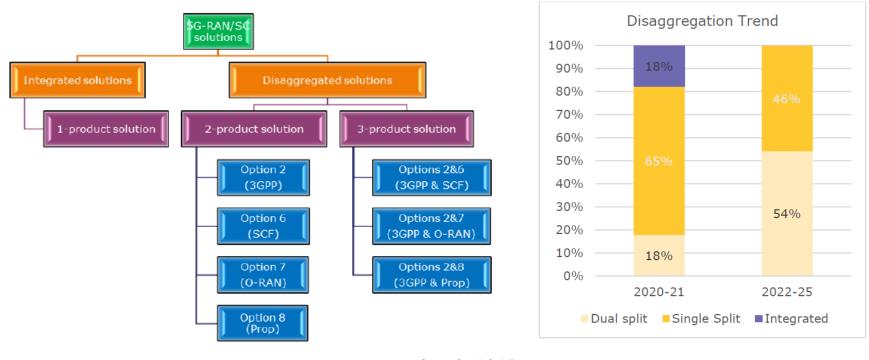


- Virtualisation of RAN functions facilitating the disaggregation
 - CU may be a shared virtual entity (software implementation) running on virtualized infrastructure in data centers
 - RU is typically dedicated hardware at the cell site
 - DU may have a combination of dedicated hardware and virtualized entity, depending on the protocol split adopted
- Motivation for disaggregated NG-RAN split architectures
 - Potential cost reduction due to low complexity radio units & BBU processor pooling (shared CU, DUs etc.)
 - Efficient operation of RUs via CUs (e.g. improved coordination for intercell interference reduction)
- Migration from distributed RAN (D-RAN) to centralised RAN (C-RAN)
 architectures


- Multiple RAN functional split options specified by 3GPP
 - Each split option has a number of implications and tradeoffs in terms of latency tolerances, fronthaul/backhaul capacity requirements, complexity, flexibility etc.

Source:3GPP

- 3GPP split options adopted by other SDOs or industry alliances
 - Specify disaggregated RAN products based on different splits
 - Specify open interfaces/APIs for intelligent RAN control, RAN service innovation, reduce vendor lock-in etc.



Source:ITU

Split Architectures Trends

- RAN product classifications and projects from industry surveys by Small Cell Forum
 - Integrated solutions: Legacy solution with RU, DU and CU in one box
 - Single split 2 product solutions: e.g. RU/DU and CU as separate products
 - Dual split 3 product solutions: RU, DU and CU all as separate products

Source:Small Cell Forum

Future Developments

Some Example 5G NR Release 16 Work Items

- Operation in unlicensed bands (e.g. 60 GHz)
 - Complementing licensed bands
 - Similar to what is done in LTE-A Pro
- Enhancement of Ultra-Reliable (UR) Low Latency Communications (URLLC)
- Cellular IoT support and evolution
- Advanced V2X support
- 5G Location and Positioning Services
- Integrated Access and Backhauling (IAB)
- Satellite Access in 5G

5G NR Release 17 Work Items

Includes several features approved to address different needs of vertical industries

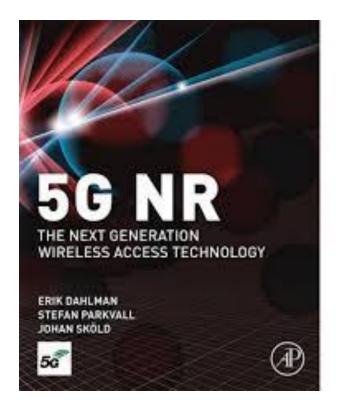
Release 17

- NR MIMO
- NR Sidelink enh.
- 52.6 71 GHz with existing waveform
- Dynamic Spectrum Sharing (DSS) enh.
- Industrial IoT / URLLC enh.
- Study IoT over Non Terrestrial Networks (NTN)
- NR over Non Terrestrial Networks (NTN)
- NR Positioning enh.
- Low complexity NR devices
- Power saving
- NR Coverage enh.
- Study NR eXtended Reality (XR)
- NB-IoT and LTE-MTC enh.
- 5G Multicast broadcast
- Multi-Radio DCCA enh.
- Multi SIM
- Integrated Access and Backhaul (IAB) enh.

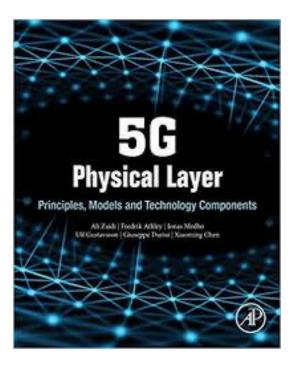
- NR Sidelink relay
- RAN Slicing
- Enh. for small data
- SON / Minimization of drive tests (MDT) enh.
- NR Quality of Experience
- eNB architecture evolution, LTE C-plane / U-plane split
- Satellite components in the 5G architecture
- Non-Public Networks enh.
- Network Automation for 5G phase 2
- Edge Computing in 5GC
- Proximity based Services in 5GS
- Network Slicing Phase 2
- Enh. V2x Services
- Advanced Interactive Services
- Access Traffic Steering, Switch and Splitting support in the 5G system architecture

- Unmanned Aerial Systems
- 5GC LoCation Services
- Multimedia Priority Service (MPS)
- 5G Wireless and Wireline Convergence
- 5G LAN-type services
- User Plane Function (UPF) enh. for control and 5G Service Based Architecture (SBA)

These are some of the Rel-17 headline features, prioritized during the December 2019 Plenaries (TSG#86)


Start of work: January 2020

Full details of the content of ReI-17 are in the Work Plan: www.3gpp.org/specifications/work-plan


C 3GPP - February 2020

Further Reading

https://aalto.finna.fi/Record/alli.914025

https://aalto.finna.fi/Record/alli.921494

Thank You!