Aalto University School of Science Department of Mathematics and Systems Analysis

Korte

MS-C1350 Partial differential equations, fall 2020 Pre-lecture assignment for Mon 14 Sept 2020

Please answer YES or NO, unless otherwise stated.

- 1. (a) $f \in L^2([-\pi,\pi]) \Longrightarrow f \in C([-\pi,\pi]).$ (b) $f \in C([-\pi,\pi]) \Longrightarrow f \in L^2([-\pi,\pi]).$
 - (c) $||f g||_{L^2([-\pi,\pi])} = 0 \iff f(t) = g(t)$ for every $t \in \mathbb{R}$.
 - (d) Assume that $f, g \in C([-\pi, \pi])$. Then $||f-g||_{L^2([-\pi,\pi])} = 0 \iff f(t) = g(t)$ for every $t \in \mathbb{R}$.
- 2. (a) The definition of the Fourier series applies to all functions in $L^1([-\pi,\pi])$.
 - (b) The definition of the Fourier series applies to all functions in $L^2([-\pi,\pi])$.
 - (c) The definition of the Fourier series applies to all functions in $C([-\pi,\pi])$.
 - (d) If the Fourier series converges pointwise everywhere, the obtained function is 2π -periodic.
- 3. (a) A trigonometric polynomial belongs to a subspace of $L^2([-\pi,\pi])$ spanned by the functions $e_j(t) = e^{ijt}$, $j = -n, \ldots, n$ for some $n \in \mathbb{N}$.
 - (b) The partial sum $S_n f$ of a Fourier series is an orthogonal projection of the function f to the subspace of $L^2([-\pi,\pi])$ spanned by $\{e_j\}_{j=-n}^n$.
 - (c) The partial sum of a Fourier series gives the best approximation of a function in $L^2([-\pi,\pi])$ with trigonometric polynomials.
 - (d) The statement that the partial sum of a Fourier series gives the best approximation of a function in $L^2([-\pi,\pi])$ with trigonometric polynomials means that there does not exist a function in $L^2([-\pi,\pi])$, which would be closer to the original function in L^2 -norm.
- 4. (a) $L^2([-\pi,\pi])$ is an infinite dimensional vector space.
 - (b) The Fourier series of every function $f \in L^2([-\pi, \pi])$ converges with respect to the L^2 -norm.
 - (c) The statement that $S_n f$ approximates a function f in $L^2([-\pi,\pi])$ means that, the error term $||f S_n f||_{L^2([-\pi,\pi])}$ converges to zero as $n \to \infty$.
 - (d) Fourier coefficients are coordinates of the function with respect to the basis $\{e_j\}_{j\in\mathbb{Z}}$.
- 5. (a) Every element $f \in L^2([-\pi,\pi])$ is uniquely determined by its Fourier coefficients $\widehat{f}(j), j \in \mathbb{Z}$.
 - (b) The Fourier coefficients $\hat{f}(j)$ of a function $f \in L^2([-\pi, \pi])$ converge to zero as $|j| \to \infty$.

- (c) The Fourier coefficients $\widehat{f}(j)$ of a function $f \in L^2([-\pi, \pi])$ converge faster to zero as $|j| \to \infty$ if the function f is smoother.
- (d) The zero function is the only element in $L^2([-\pi,\pi])$, whose all Fourier coefficients are zero.