Korte

MS-C1350 Partial differential equations, fall 2020

Pre-lecture assignment for Mon 21 Sept 2020

Please answer YES or NO, unless otherwise stated.

- (a) Separation of variables is based on finding special solutions to the PDE as a product of functions so that each function depends only on one variable.
 - (b) Separation of variables applies to PDE problems on rectangular domains.
 - (c) Separation of variables is based on transforming a PDE to a system of ODEs.
 - (d) Separation of variables is based on finding solutions to the corresponding system of ODEs.
- 2. Consider the Dirichlet problem for the Laplace equation in the unit disc, see Section 2.11 in the lecture notes.
 - (a) All functions $r^{|j|}e^{ij\theta}$, $j \in \mathbb{Z}$, are solutions to the Laplace equation.
 - (b) All functions $r^{|j|}e^{ij\theta}$, $j \in \mathbb{Z}$, have zero boundary values on the unit circle.
 - (c) The solution of the original problem is obtained as a countable linear combination of the special solutions above.
 - (d) The coefficients in the linear combination are determined by the Fourier coefficients of the boundary function.
- 3. Continuation of the previous problem.
 - (a) The $L^1([-\pi,\pi])$ -norm of the function $\theta \mapsto P_r(\theta)$ is equal to one for every $r \in (0,1)$.
 - (b) The solution to the original problem can be represented as a convolution of the Poisson kernel with the boundary function.
 - (c) The solution of the original problem on the boundary of the unit disc can be obtained by inserting r = 1 in the convolution formula.
 - (d) The solution of the original problem is always zero at the origin.
- 4. Consider the space-time model of the initial value problem for the heat equation on the unit circle, see Section 2.12 in the lecture notes.
 - (a) The initial value function corresponds to the boundary values at the time zero.
 - (b) The boundary values can also be given on the lateral boundaries $\{-\pi\} \times \mathbb{R}_+$ and $\{\pi\} \times \mathbb{R}_+$.

- (c) The heat distribution on a circle at the moment t is given by the solution on the line segment $[-\pi,\pi] \times \{t\}$.
- (d) The temperature at a given point θ at all moments of time t > 0 are given by the solution on the line $\{\theta\} \times \mathbb{R}_+$.
- 5. Continuation of the previous problem.
 - (a) The functions $e^{-j^2t}e^{ij\theta}$, $j \in \mathbb{Z}$, are solutions to the heat equation in $(-\pi,\pi) \times \mathbb{R}_+$
 - (b) The functions $e^{-j^2t}e^{ij\theta}$, $j \in \mathbb{Z}$, have zero initial values.
 - (c) The functions $e^{-j^2t}e^{ij\theta}$, $j \neq 0$, decay to zero as $t \to \infty$.
 - (d) The solution of the problem is given by a convolution of the initial value with the heat kernel.