Korte

MS-C1350 Partial differential equations, fall 2020

Pre-lecture assignment for Mon 12 Oct 2020

Please answer YES or NO, unless otherwise stated.

- 1. Consider the Dirichlet problem for the Laplace equation in the upper halfspace, see Section 3.9 in the lecture notes.
 - (a) The Laplace equation is Fourier transformed with respect to all variables in the upper-half space.
 - (b) The Laplace equation is Fourier transformed with the last coordinate fixed.
 - (c) The Laplace equation becomes an ODE with respect to the last variable on the Fourier side.
 - (d) The Laplace equation is satisfied if and only if it is satisfied on the Fourier side.
- 2. (Continuation to the previous problem)
 - (a) $\widehat{\Delta u}(\xi, y) = \Delta \widehat{u}(\xi, y).$
 - (b) $\widehat{u}(\xi, y) = \widehat{g}(\xi)e^{-|\xi|y}$ is a solution to the original problem on the Fourier side.
 - (c) $u(x,y) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-|\xi|y} \widehat{g}(\xi) e^{ix\cdot\xi} d\xi$ is a solution to the original problem in the upper half-space.
 - (d) $u(x,y) = (P_y * g)(x)$, with $\widehat{P_y}(\xi) = e^{-|\xi|y}$, is a solution to the original problem in the upper half-space.
- 3. Consider the initial value problem for the heat equation in the upper halfspace, see Section 3.10 in the lecture notes.
 - (a) The initial condition is used to determine free parameters in the solution of the ODE.
 - (b) The initial condition can be verified by inserting t = 0 in the formula $u(x,t) = (H_t * g)(x,t).$
 - (c) The initial condition can be verified on the Fourier side by inserting t = 0 in the formula for $\hat{u}(\xi, t)$.
 - (d) If $g \in C_0^{\infty}(\mathbb{R}^n)$, then the initial values are attained in the limit sense $\lim_{t \to 0} u(x,t) = g(x)$ for every $x \in \mathbb{R}^n$.

- 4. (a) One advantage of the Fourier transform is that a PDE becomes an ODE.
 - (b) One advantage of the Fourier transform is that representation formulas for solution are convolutions.
 - (c) One advantage of the Fourier transform is that it also proves the uniqueness of a solution.
 - (d) One advantage of the Fourier transform is that it also applies to nonhomogeneous problems.
- 5. (a) Fundamental solutions are solutions to the corresponding PDEs in the upper half-space.
 - (b) Fundamental solutions have zero initial and boundary values.
 - (c) General solutions can be represented by the fundamental solution and the data of the problem.
 - (d) Fundamental solutions are radial functions in the spatial variable.