Software Studies for Media
Designers

Media Lab,
Markku Reunanen

BASIC
C
Pascal

Assembly language
Processing

Shell scripts

PHP

ST = CET T
RS L I e [
1 [FFASETED [[<[=>F
%l——_—l Ih [~
W] | Ao | | IS
L]

Overview of Programming
Languages

A bit of history and some ways to categorize
existing tools

by
Markku Reunanen

History (1)

* Digital computers appeared in the late 1940s
and early 1950s

At first very crude machines

- Hardwired functionality

- Hand-coded machine language

- “Typing” by flicking switches or writing
software on punch cards

- Symbolic machine language easier for
humans: assembly language

History (2

R E—
[| FORTRAN STATEM ' Flil““ﬂ'
WUARevisivasesndaoadacondand L LN E L) T L

N aEE TR kW IENEECoEGERER RN SR EA R NN

1111 IIIII|1111IIF[LI1!II

|
IR IRNATANND
1133333303323)31)
|

4{1++14jlllllll
SSSE5/EELEENEY
Eiiiiiilﬁﬁiiﬁl
1111101111117 |
AEREERNEERENES!

Hygaeg
W

. & e . g - . R . 488 555
Bl e AN SR e NI R E DS i ; i ¥ b y :JL:E?L}Ei?E?i!EHia!z:
LB il S

History (3)

 Some assembly language (directly mapped to
machine instructions)

d a,100
ld Db,[var]
cmp a,b

jr z,equal
ld [var],b

ret

History (4)

* First high-level languages appeared in the
1950s

- FORTRAN (1954), still used in scientific
computing. Later on evolves to BASIC
(1964).

- LISP (1958), “artificial intelligence” language,
still used for scripting

- COBOL (1959), used to be very popular in
business applications

* Terminals, punch cards, teletype

History (5)

 FORTRAN:
INTEGER A,B,C
READ(5,501) A,B,C
501 FORMAT(315)
IF(A.EQ.0 .OR. B.EQ.0) STOP 1
S=(A+B+C)/20
WRITE(6,601) A,B,C

History (6)

 BASIC was the operating system for most 8-bit
home computers in the 1980s

10 REM MY FIRST PROGRAM
20 PRINT’"ENTER YOUR NAME:”

30 INPUT A%
40 IF AS="MARKKU” THEN PRINT"YEAH!”

50 END

History (7)

* 1960s and 1970s: procedural programming
languages

- Pascal (1970), still in use as Borland Delphi
(1995)

- C (1972), still in wide use, forefather of C++,
Java etc.

* The advent of object-oriented languages

- Smalltalk (1972) by Alan Kay
- C++ (1980), still in wide use
- Java (1995), both server and client side

Terminal time

s

nBBRNE gangeAnSabEo--

; gREaEASEn

EhkicE. b
e,
seopebgeopzaiiangeg-gd

TCULE LLLLLER L EECEE

o :mlg.mm -mmm wmwmmmmﬂmm \d

* Digital VT100 terminal

History (8)

* An example in C

#include <stdio.h>
main()
{
int n;
printf("Even numbers up to 100:\n");
for(n=2;n<=100;n+=2)
printf(“%d\n",n);

History (9)

* Pascal is conceptually very similar:

program Numbas;
var
n:integer;
begin
writeln("All numbers up to 100'");
for n:=1 to 100 do
writeln(a);
end.

History (10)

* 1990s: web-oriented languages

* Server-side script languages

- Perl (1987)
- Python (1991), now used for many purposes
- PHP (1995)
* Client-side languages
- JavaScript (19995)
— ActionScript (1998)

History (11)

e Other notable appearances

- Logo (1968), for kids, developed by Wally
Feurzeig & Seymour Papert. Turtle graphics.

- Forth (1970), stack-based language

- Max (mid-1980s), Pure Data (mid-1990s),
visual programming

- Visual Basic (1991), for easy GUI
programming
- C# (2001), Microsoft Java-like

History (12)

* Logo turtle graphics example

TO PROGGIS
FD 100

LT 90

FD 100

RT 90

END

Future?

* General trend from low-level to high-level
* Object-oriented features, parallelism
» Standard libraries, components

* Web as application platform, platform
independency

* Toys such as JavaScript became viable tools
* HTMLS Canvas, WebGL, WebAssembly ...

Processing (1)

* Website:

 Casey Reas & Ben Fry from MIT, 2001
* Free, open source

* Available for Linux/Win/Mac

 Based on Java, Java components can be
used

* Closest relatives: C, C++, C#, JavaScript

http://www.processing.org/

Processing (2)

Making interactive and graphics programming
easy to approach

Not a toy — large-scale software can be written

Basic functionality can be extended through a
variety of libraries

Programs are called “sketches”

End result can be exported as a standalone
Java application for desktop or Android

Processing? (1)

* This is not a Processing course. What you are
actually learning are:

- Fundamental concepts and terminology of
programming

— A programming mindset

— These principles can be applied to many other

languages and development tools as well,
not just Processing

Processing? (2)

* Not just one monolithic “Processing”

- Processing.js and P5.js: JavaScript
frameworks

- Processing iCompiler: iPhone version
— Mobile Processing: J2ME for low-end mobiles

- Processing for Android: Part of the normal
distribution package already. Easy
development for smartphones and tablets.

Processing? (3)

* Because of its legacy, learning Processing
gets you started with other languages, too:

- C/C++

— Objective C, C#

- Java

- JavaScript/ECMAScript

— Arduino (Wiring): Hacking electronics
- PHP/Perl/Pascal/Delphi not far either

* You're being empowered! :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

