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Understanding machine learning

For a professional machine learning engineers / data scientists it is useful

to go beyond using machine learning tools as black boxes:

• Machine learning does not always

succeed, one needs to be able to

understand why and find remedies

• Not possible to follow the scientific

advances in the field without

understanding the underlying

principles

• Competitive advantage: more jobs

and better pay for people that have

understanding of the algorithms and

statistics
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Theoretical paradigms of machine learning

Theoretical paradigms for machine learning differ mainly on what they

assume about the process generating the data:

• Statistical learning theory (focus on this

course): assumes data is i.i.d from an unknown

distribution P(x), does not estimate the

distribution (directly)

• Bayesian Statistics (focus of course CS-E5710

- Bayesian Data Analysis): assumes prior

information on P(x), estimates posterior

probabilities

• Information theoretic learning (e.g. Minimum

Description Length principle, MDL): estimates

distributions, but does not assume a prior on

P(x)
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Supervised and unsupervised machine learning

• Supervised machine learning (Focus of this course)

• training data contains inputs and outputs (=supervision)

• goal is to predict outputs for new inputs

• typical tasks: classification, regression, ranking

• Unsupervised machine learning (Focus of course CS-E4650 -

Methods of Data Mining,

https://mycourses.aalto.fi/course/view.php?id=28201)

• training data does not contain outputs

• goal is to describe and interpret the data

• typical tasks: clustering, association analysis, dimensionality

reduction, pattern discovery
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Course topics

• Part I: Theory

• Introduction

• Generalization error analysis & PAC learning

• Rademacher Complexity & VC dimension

• Part II: Algorithms and models

• Linear models: perceptron, logistic regession

• Support vector machines

• Kernel methods

• Boosting

• Neural networks (MLPs)

• Part III: Additional learning models

• Feature learning, selection and sparsity

• Multi-class classification

• Preference learning, ranking

• Multi-output learning
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Supervised Machine Learning

Tasks



Classification

Classification deals with the problem of partitioning the data into

pre-defined classes by a decision boundary or decision surface (blue

line in the figure below)

• Example: In credit scoring task, a

bank would like to predict is the

customer should be given credit or not

• Decision can be based on available

input variables: Income, Savings,

Employment, Past financial history,

etc.

• Output variable is a class label:

low-risk (0) or high-risk (1)

• This is called binary classification

since we have two classes
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Multi-class classification

Multi-class classification tackles problems where there are more than two

classes

• Example: hand-written

character recognition

• Input: images of

hand-written characters

• Output: the identity of the

character (e.g. Unicode ID)

• Multi-label Classification An example can belong to multiple

classes at the same time

• Extreme classification Learning with thousands to hundreds of

thousands of classes (Prof. Rohit Babbar @ Aalto)
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Regression

• Regression deals with output variables

which are numeric

• Example: predicting the price of the

car based on input variables (model,

year, engine capacity, mileage)

• Linear regression: our model is a line:

f (x) = wx + w0

• Polynomial regression: our model is a

polynomial: quadratic

f (x) = w2x
2 + w1x + w0, cubic

f (x) = w3x
3 + w2x

2 + w1x + w0 or

even higher order

• Many other non-linear regression

models besides polynomials
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Ranking and preference learning

• Sometimes we do not need to predict

exact values but a ordered list of

preferred objects is sufficient

• Example: a movie recommendation

system

• Input: characteristics of movies the

user has liked

• Output: an ranked list of

recommended movies for the user

• Training data typically contains

pairwise preferences: user x prefers

movie yi over movie yj
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Dimensions of a supervised learning algorithm

1. Training sample: S = {(xi , yi )}mi=1, the training examples

(x , y) ∈ X × Y independently drawn from a identical distribution

(i.i.d) D defined on X × Y, X is a space of inputs, Y is the space of

outputs

2. Model or hypothesis h : X 7→ Y that we use to predict outputs

given the inputs x

3. Loss function: L : Y × Y 7→ R, L(. . . ) ≥ 0, L(y , y ′) is the loss

incurred when predicting y ′ when y is true

4. Optimization procedure to find the hypothesis h that minimize the

loss on the training sample
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Data spaces

• The input space X , also called the instance space is generally

taken as an arbitrary set

• Often X ⊂ Rd , then the training inputs are vectors x ∈ Rd - we use

boldface font to indicate vectors

• But they can also be non-vectorial objects (e.g. sequences, graphs,

signals)

• Often data are mapped to feature vectors in preprocessing or during

learning.

• The output space Y containing the possible outputs or labels for

the model, depends on the task:

• Binary classification: Y = {0, 1} or Y = {−1,+1}
• Multiclass classification: Y = {1, . . . ,K}
• Regression: Y = R
• Multi-task/multi-label learning: Y = Rd or Y = {−1,+1}d
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Loss functions

• Loss function L : Y × Y 7→ R, measures the discrepancy L(y , y ′)

between two outputs y , y ′ ∈ Y
• Used to measure an approximation of the error of the model, called

the empirical risk, by computing the average of the losses on

individual instances

R̂(h) =
1

m

m∑
i=1

L(h(xi ), yi )

• Loss functions depend on the task:

• squared loss is used in regression: Lsq(y , y ′) = (y ′ − y)2, y , y ′ ∈ R
• 0/1 loss is used in classification: L0/1(y , y ′) = 1y 6=y′

• Hamming loss is used in multilabel learning:

L(y , y ′) =
∑d

j=1 L0/1(yj , y
′
j ), y , y ′ ∈ {−1,+1}d

• Loss functions taking into account the structure of the output space

or the cost of errors can also be defined
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Generalization

• Our aim is to predict as well as possible the outputs of future

examples, not only for training sample

• We would like to minimize the generalization error, or the (true)

risk

R(h) = E(x,y)∼D [ L(h(x), y) ] ,

• Assuming future examples are independently drawn from the same

distribution D that generated the training examples (i.i.d

assumption)

• But we do not know D!

• What can we say about R(h) based on training examples and the

hypothesis class H alone? Two possibilities:

• Empirical evaluation through testing

• Statistical learning theory (Lectures 2 and 3)
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Hypothesis classes

There is a huge number of different hypothesis classes or model

families in machine learning, e.g:

• Linear models such as logistic regression and perceptron

• Neural networks: compute non-linear input-output mappings

through a network of simple computation units

• Kernel methods: implicitly compute non-linear mappings into

high-dimensional feature spaces (e.g. SVMs)

• Ensemble methods: combine simpler models into powerful combined

models (e.g. Random Forests)

Each have their different pros and cons in different dimensions (accuracy,

efficiency, interpretability); No single best hypothesis class exists that

would be superior to all others in all circumstances.
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Optimization algorithms

The difficulty of finding the best model depends on the model family and

the loss function

We are often faced with

• Non-convex optimization landscapes

(e.g. neural networks) 7→ hard to find

the global optimum

• NP-hard optimization problems (e.g

finding a linear classifier that has the

smallest empirical risk) 7→ need to use

approximations and heuristics
Optimization landscape of a neural net. Source:

https://www.cs.umd.edu/ tomg/projects/landscapes/

”Big Data” with very large training sets (1 million examples and beyond)

amplifies these problems
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Linear regression



Example: linear regression

• Training Data: {(xi , yi )}mi=1, (x , y) ∈ Rd × R

• Loss function: squared loss Lsq(y , y ′) = (y − y ′)2

• Model family: hyperplanes in h(x) =
∑d

j=1 βjxj + β0

• Model: y = h(x) + ε, where ε is random noise corrupting the output.

We assume zero-mean normal distributed noise: ε ∼ N (0, σ2), with

unknown σ

• Optimization: essentially, inverting a matrix (low polynomial time

complexity)
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Example: linear regression

Optimization problem

minimize
m∑
i=1

(y −
d∑

j=1

βjxij + β0)2

w .r .t.βj , j = 0, . . . , d

Write this in matrix form:

minimize (y − Xβ)T (y − Xβ)

w .r .t. β ∈ Rd+1

where X =



1 x1
...

...

1 xi
...

...

1 xm


,β =


β0
β1
...

βd

 y =


y1
...yi
...

ym
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Example: linear regression

Minimum of

minimize (y − Xβ)T (y − Xβ)

w .r .t.β ∈ Rd+1

is attained when the partial derivatives are zero

∂

∂β
(y − Xβ)T (y − Xβ)

=
∂

∂β
yTy − ∂

∂β
2(Xβ)Ty +

∂

∂β
(Xβ)TXβ

=− 2XTy + 2(XTX)β = 0

This gives us a set of linear equations XTy = (XTX)β that can be solved

by inverting XTX:

β = (XTX)−1XTy

if XTX invertible, and by computing a pseudo-inverse, otherwise

18



Binary classification



Binary classification

• Goal: learn a class C , C (x) = 1 for

members of the class, C (x) = 0 for

others

• Example: decide if car is a family car

(C (x) = 1) or not (C (x) = 0)

• We have a training set of labeled

examples

• positive examples of family cars

• negative examples of other than

family cars

• Assume two relevant input variables

have been picked by a human expert:

price and engine power
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Data representation

• The inputs are 2D vectors

x =

[
x1
x2

]
∈ R2, where x1 is the price

and x2 is the engine power

• The label is a binary variable

y =

{
1 if x is a family car

0 if x is not a family car

• Training sample S = {(xi , yi )}mi=1

consists of training examples, pairs

(x, y)

• The labels are assumed to usually

satisfy yi = C (xi ), but may not always

do e.g. due to intrinsic noise in the

data
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Hypothesis class

• We choose as the hypothesis class

H = {h : h : X 7→ {0, 1}} the set of

axis parallel rectangles in R2

h(x) = (p1 ≤ x1 ≤ p2)AND(e1 ≤ x2 ≤ e1)

• The classifier will predict a ”family

car” if both price and engine power

are within their respecive ranges

• The learning algorithm chooses a

h ∈ H by assigning values to the

parameters (p1, p2, e1, e2) so that h

approximates C as closely as possible

However, we do not know C , so cannot measure exactly how close h is to

C !
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Version space

If a hypothesis correctly classifies all training examples we call it a

consistent hypothesis

• Version space: the set of all consistent

hypotheses of the hypothesis class

• Most general hypothesis G : cannot be

expanded without including negative

training examples

• Most specific hypothesis S : cannot be

made smaller without excluding

positive training points
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Margin

• Intuitively, the ”safest”

hypothesis to choose from

the version space is the one

that is furthers from the

positive and negative training

examples

• Margin is the minimum

distance between the decision

boundary and a training point

The principle of choosing the hypothesis with a maximum margin is used,

e.g. in Support Vector Machines
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Zero-one loss

• The most commonly used loss function for classification is the

zero-one loss: L0/1(y , y ′) = 1y 6=y ′ where 1A is the indicator function:

1A =

{
1 if A is true

0 otherwise

• However, zero-one loss is not a good metric when the class

distributions are imbalanced

• consider a binary problem with 9990 examples in class 0 and 10

examples in class 1

• if model predicts everything to be class 0, accuracy is 9990/10000 =

99.9% which is misleading

• Class-dependent misclassification costs are another weakness:

• consider we are dealing with a rare but fatal disease, the cost of

failing to diagnose the disease of a sick person is much higher than

the cost of sending a healthy person to more tests
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Confusion matrix

In binary classification, the zero-one loss is composed of

• False positives

{xi : h(xi ) = 1 and yi = 0} and

• False negatives

{xi : h(xi ) = 0 and yi = 1}
• Generally

• making the hypothesis more specific

leads to increased false negative

rate and decreased false positive

rate (here: smaller rectangle)

• making the hypothesis more general

(here: larger rectangle) does the

opposite
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Confusion matrix

• Consider all four possible combinations of the predicted label (0 or

1) and the actual label (0 or 1)

• The counts of examples in the four combinations can be compactly

represented in a confusion matrix

• True Positives: mTP = |{xi :

h(xi ) = 1 and yi = 1}|
• True Negatives: mTN = |{xi :

h(xi ) = 0 and yi = 0}|
• False Positives: mFP = |{xi :

h(xi ) = 1 and yi = 0}|
• False Negatives: mFN = |{xi :

h(xi ) = 0 and yi = 1}|
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Confusion matrix

From the confusion matrix, many evaluation metrics besides can be

computed

• Empirical risk (zero-one loss as the

loss function):

R̂(h) = 1
m (mFP + mFN)

• Precision or Positive Predictive Value

: Prec(h) = mTP

mTP+mFP

• Recall or Sensitivity:

Rec(h) = mTP
mTP+mFN

• F1 score: F1(h) = 2 Prec(h)·Rec(h)
Prec(h)+Rec(h) =

2mTP

2mTP+mFP+mFN

And many others see e.g.

https://en.wikipedia.org/wiki/Confusion_matrix
27
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Receiver Operating Characteristics(ROC)

• ROC curves summarize the trade-off between the true positive rate

and false positive rate for a predictive model using different

probability thresholds.

• Consider a system which returns an estimate of the class probability

P̂(y |x) or a any score that correlates with it.

• We may choose a threshold θ and make a classification rule:

h(x) =

{
1 if P̂(y |x) ≥ θ
0 otherwise

• For high values of θ prediction will be 0 for large fraction of the data

(and there are likely more false negatives), for low values of θ

prediction will be 1 for a large fraction of data (and there are likely

more false positives)
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Receiver Operating Characteristics(ROC)

• Taking into account all possible values θ we can plot the resulting

ROC curve, x-coordinate: False positive rate FPR = mFP/m,

y -coordinate: True positive rate TPR = mTP/m

• The higher the ROC curve goes, the better the algorithm or model

(higher TP rate for the same FP rate)

• If two ROC curves cross it means neither model/algorithm is globally

better

• The curve is sometimes summarized into a single number, the area

under the curve (AUC or AUROC)
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Empirical evaluation of

supervised learning models



Model evaluation by testing

• How to estimate the model’s ability to generalize on future data

• We can compute an approximation of the true risk by computing the

empirical risk on a independent test sample:

Rtest(h) =
m∑

(xi ,yi )∈Stest

L(h(xi ), yi ),

• The expectation of Rtest(h) is the true risk R(h)

• Why not just use the training sample?

• Empirical risk R̂(h) on the training sample is generally lower than the

true risk, thus we would get overly optimistic results

• The more complex the model the lower empirical risk on training

data: we would select overly complex models
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Parameter tuning: validation set

• Machine learning models often have parameters that need to be

fixed before training

• To tune the parameters we need to set aside part of the training

data as a separate validation set

• Train the model using the training data with different parameter

values and fix the parameters values that give the best performance

on the validation set

• An estimate of the models accuracy (with the chosen parameter

value) is obtained by computing the evaluation metric on the test

set, not on the validation set
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The need of multiple data splits

One split of data into training, validation and test sets may not be

enough, due to randomness:

• The training and validation sets might be small and contain noise or

outliers

• There might be some randomness in the training procedure (e.g.

initialization)

• We need to fight the randomness by averaging the evaluation

measure over multiple (training, validation, test) splits
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Dataset splitting

• For replication purposes, our first need is to get a number of training

and validation set pairs.

• Given a dataset S , we would like to generate K random splits of

S = into training (Tk) and validation set (Vk),{Tk ,Vk}Kk=1

• Generally the training set is kept as large as possible

• Stratification: class distributions of the training and validation sets

should be as similar to each another as possible. One may need to

split the positive and negative classes separately to ensure the

correct class proportions after splitting
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K-Fold Cross-Validation

• The dataset X is divided randomly into K equal-sized parts,

Xi , i = 1, · · · ,K .

• To generate each pair, we keep one of the K parts out as the

validation set and combine the remaining K − 1 parts to form the

training set.

• if m (number of the data examples) is small, K should be large to

allow large enough training sets

• Extreme case of m-fold cross-validation is leave-one-out (LOO) :

given a dataset of m examples, only one example is left out as the

validation set and training uses the m − 1 examples.
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