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Directed graph : edges
are ordered
pairs
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E multiset
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In this course
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unless

otherwise stated, all

graphs are simple, finite .
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Clique on n nodes is denoted

kn (complete graph )
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Degree of vEV : number
of edges incident to v
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G Regular if all vertices
have same degree
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PATHS & CYCLES
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A Path is a sequence
of length n Vo

. . . . Un of
not
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vertices sat
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Distances docu,u ) is

the length of a shortest

path from u to v
.
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0£ Girth s the length of
the shortest cycle in G
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Prod Every graph with 872
contains a path of leyh §.
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and a cycle of length ZSH.
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All n'bows of Xue are in the

path , because otherwise
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could extend the path.
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Let Xi be the first
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CONNECTIVITY
-

Def: G is connected, if there
-

is a path between any
pair of

notes
.
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Of G " !!
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k - edge - connected
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Tree is a connected

graph with no cycles
n:::%%. µiE

.

dual
.
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Forest is a disjoint union
of trees

.

s
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So every tree
has at least two

tears ( ie degree I nodes)
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1) T is a tree
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Elen : A tree with IVI -- n

has let n - I

PI: By induction on n
.

(base case a- I)
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A tree with a prescribed root
r EV

,
is a

rooted tree
,

yields a partial order or V.
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It = {0,1} faith addition 1*1=0)

Espbaea El -61 = { f : E. → IF}
( subset of
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Note : every cycle intersects

every cut an even number
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WTS : TY ha , a basis with

one elf for each edge in

G -T
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one ett for end edge in .T
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from u
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