Geaph theory
MS-EIOSO

E set of unordered pairs of vertices

Directed graph: edges are ordered
Multigroges:
E multiset loops allowed
In this course, unless otherwise stated, all graphs are simple, finite.

Def: If $\{u, u\} \in E$,
then

- u and v are adjacent
- e is incident to u (and
to v)
- v is a neighbour of u
- Ar independent sen in Cor table
$G=(V, E)$ is a set of nodes without edges between then.
- Clinuelis a
set of nodes that
are par wise cibow?

indene.

Clique on n nodes is denoted K_{n} (complete graph)

$$
\varphi: V \rightarrow V^{\prime} \text { is }
$$

an isomorphism of
graphs (V, E) and $\left(V^{\prime}, \epsilon^{\prime}\right)$

if $\cdot Y$ is a bijection
$-\left\{u, \gamma \in E \Longleftrightarrow\left\{\varphi_{u}, \varphi_{v}\right\} \in E^{\prime}\right.$
G, H isomorphic if \exists isomorphism, between them

Cunlabelled" graph \Leftrightarrow esomorphism class of graphs)
H Subgraph of G if
$\left(V^{\prime} E^{\prime}\right)$ (V, E)

$$
\begin{aligned}
& V^{\prime} \subseteq V \\
& E^{\prime} \subseteq E
\end{aligned}
$$

H induced subgrapl of 6
($\left.U^{\prime}, E^{\prime}\right)$
, F

$$
\begin{aligned}
& V^{\prime} \subseteq V \\
& E^{\prime}=E \cap\binom{V^{\prime}}{2}
\end{aligned}
$$

2-elt subseft of V^{\prime}

Degree of $v \in V:$ number of edges incident to v

$$
d(v)
$$

$\delta(\sigma)=2 \quad \Delta(c)=3$.
G Regular it all vertices have same degree

Ex: Petersen graph 3-regular

Minimal degree $\delta(G)=\min _{v \in V} d(l)$
Maximal Legree
$\Delta(G)=\underset{\substack{v \in v \\ v \in V}}{v \in V} d(v)$

Prop The number of nodes of odd degree is ever.

Proof

$$
\begin{aligned}
\widehat{2 \cdot|E|} & =\#\left\{\begin{array}{l}
\text { dje-vertex } \\
\text { incidences }
\end{array}\right\} \\
2 \cdot 6 & =\sum_{v \in V} d(v) \\
& =2+2+2+3+3
\end{aligned}
$$

So the number of odd terms in the

10 odd sun is even.

Paths \& Cycles
A Path, is a sequence
${ }_{0} \operatorname{lingh}_{n} \quad v_{0} \ldots v_{n}$ of $\frac{\text { distinct }}{\text { for all } \quad i=0 \ldots n-1}$ st. $\left.\left\{v_{i} v_{i+1}\right\}\right\}_{E}$
"Path" = "simple walk"

Cycle, is a path, st. $\left\{v_{n} v_{0}\right\}$ of length $n+1$

$$
v_{0} \ldots v_{1} \quad{ }_{E}^{\pi}
$$

Distances $d_{G}(u, v)$ is the length of a shortest path from a to v.

$$
\begin{aligned}
& \text { if mo path } u-v, \text { then } \\
& d(u, v)=\infty \\
& d(u, v)=3 \quad u \\
& \left(\begin{array}{l}
d(u, v)+d(v, w) \geqslant d(u, w) \\
d(u, v) \geqslant 0 \\
d(u, v)=0 \Longleftrightarrow u=v
\end{array}\right.
\end{aligned}
$$

Diameter of $G=(V, E)$ is $\max _{u, v \in v} d(u, v)$

Def: Girth $g(G)$ is the length of the shortest cycle in G.

Def: Radius of $G=\left(V_{c} E\right)$

$$
r(G)=\min _{V \in V}\left(\max _{u \in V} d(u, v)\right.
$$

the $v \in V$ that minimizes this is central

Prop Every graph with $\delta \geqslant 2$ conking a path of leigh δ and a cycle of leyph $\geqslant \delta+1$.
Proof: Consider a longest path

All i bows of x_{k} are in the path, because otherwise we could extend the path.
so $\delta \leq d\left(X_{k}\right) \leq k$
Let x_{i} be the first ibour of x_{k} in the path. then $x_{i} i_{2} x_{k} x_{i}$ cu de

CONNECTIVITY
Def: G is connected, if there is a path between any pair of odes.
$\left(V_{i} E\right)$

Def: G is k-connected. if
Nlizkal for all subsets $U \leq V$ w.
$|U|<k, \quad G[V-u]$ is connected.
indued subsraph on vertices v-U
Of: Largest k st. G is k-conned is the connectivity $K(G)$

Of ${ }_{\sigma}=(V, E)$
if k-edje-connected if $|E| \geqslant k$ and for all

$$
F \leqq \in \quad|F|<k, \quad(V, E-F)
$$

is connected
$\lambda(6)$ (edge connectivity) is largest k st G is k-edje connected.

Next time
Prof:

$$
k(G) \leqslant \lambda(G) \leqslant \delta(G)
$$

Tree is a connected graph with 10 cycles
maximal path
endpoints" have

$$
d(v)=1 .
$$

Forest is a disjoint union of trees.
ie. a graph n no cycles.
So every tree has at least two leaves (ie degree 1 nodes)

Thu 1.5.1

1) $T=\left(V_{1} E\right)$ TFAE:
2) For any $u, v \in V$, there (is a unique path nov
$\left.{ }^{3}\right) T$ is maximally acyclic

$$
\begin{aligned}
& \text { is maximally acychc } \\
& \text { on } V\left[\begin{array}{cc}
\text { If EfF, then (V,F) } \\
\text { Mascle }
\end{array}\right]
\end{aligned}
$$

4) T is minimally connected

Claim: A tree with $|V|=n$ has $|E|=n-1$
Pf: By induction on n.
(base cave $n=1$)
ind. step:
Add leaf 4.

$T\{x\}$ is tree with
Indeed, if $\sigma=(V, E)$ $n-1$ nodes n-2 edges
is connected, then
G tree $\Leftrightarrow|E|=|v|-1$
Tho: If $G=\left(V_{C} E\right)$ it has a spanning tree

$$
T=(U, F) \quad F \subseteq E .
$$

A tree with a prescribed coot $r \in V$ is a rooted tree, yields a partial order on V. $u \leq v$ if the riv path goes through u

Normal TREE

(DEPTH FIRST SEARCH TREE) is a spanning tree of G st rooted
G has no edges between incomp. nodes
exist for all conn. G all roots r.

Def
$\left(V_{, E}\right)=G$ bipartite if

$$
\begin{array}{ll}
\text { st. } & V=A u B \\
E_{n}\binom{A}{2} \\
E_{\cap}^{\prime}\binom{B}{2}=\varnothing
\end{array}
$$

Tho: G bipartite \Leftrightarrow
G has no odd cycles.

Def

$G=(V, E)$ minor of H if
there are disjoint sets $U_{x} \in U$ st. $H\left[U_{x}\right]$ connected,

$$
\{x y\} \in 6 \Leftrightarrow \text { there }
$$

Gre
\square is an $e^{\text {de }}$

$$
G / e
$$ $U_{x}-U_{y}$ in H.

G minor of $H=\left(\begin{array}{|c|c}\text { there } \\ \text { edges } \\ d_{1} \ldots d_{k}\end{array}\right.$

$$
\mathbb{F}_{2}=\{0,1\} \text { (with addition } 1+1=0 \text {) }
$$

$\underset{\text { space }}{\text { Ede }} \mathcal{\text { spa }}(G)=\left\{f: E \rightarrow \mathbb{F}_{2}\right\}$
2 (subset of
Addition in $E(G) \Leftrightarrow$ symm. difference. ed pes)

$$
\begin{aligned}
\left\langle f, f^{\prime}\right\rangle= & \sum_{e \in E} \frac{f(e) \cdot f^{\prime}(e)}{} \quad\left\{\begin{array}{ll}
0 & \text { if } f \cap f^{\prime} \text { even } \\
1 \text { if } f \cap f^{\prime}
\end{array}\right\} \text { (sees as } \\
& \text { odd edge sets) }
\end{aligned}
$$

$e(G) \subseteq \varepsilon(G)$: spooned by

$$
B(6) \subseteq \varepsilon(6)
$$

contains all edged sets Between (edge sch, of) cycles
 A and \vec{A}, for subset $A \subseteq V$.

$$
\begin{gathered}
c=\{1,2,3,4\} \cdots(1111000) \in e(G) \\
b^{m}\{1,4,7\} \Leftrightarrow(1.001001) \in B(G) \\
\langle c, 6\rangle=1.1+1.0+1.0+1.1+0.0+0.0+0.1 \\
=0
\end{gathered}
$$

Note: every cycle intersects every cut as even number of times, so $C \perp \mathbb{B}$

$$
\begin{aligned}
& \frac{\text { Obvious }}{\operatorname{din}} \mathcal{E}(G)=m=|E| \\
& \frac{\text { Clans }}{\operatorname{din} C(G)=(m-n+1)=|E|-|V|+1} \\
& \operatorname{dim} B(G)=n-1=|v|-1
\end{aligned}
$$

Span tree
$T \leq G$

UTS: $\quad(G)$ ha, a basis with ell for each edge in GT
B(G) has a basis with one eft for each edge in T.
So for $e^{\{,\{u, v\}}$ not in T, its fundamental cycle σ_{e} is $\{e\} 0$ the nay in τ
Clearly, $\quad\left\{c_{e}: \quad e \in E \cdot E(T)\right\}$ lin independent

$$
\operatorname{dim}^{\text {so }} C \geqslant m^{-n+1}
$$

Let u be one of the endpts of e, let
A_{e} be the set of nodes reachable in T_{-e} from u.

so $\quad \operatorname{dim} B \geqslant n-1$.

