Lecture 1
 Convex sets

- subspace, affine set, convex set, convex cone
- simple examples and properties
- combination and hulls
- ellipsoids, polyhedra, norm balls
- affine and projective transformations
- separating hyperplanes
- generalized inequalities

Subspaces

$S \subseteq \mathbf{R}^{n}$ is a subspace if

$$
x, y \in S, \quad \lambda, \mu \in \mathbf{R} \quad \Longrightarrow \lambda x+\mu y \in S
$$

Geometrically: $x, y \in S \Rightarrow$ plane through $0, x, y \subseteq S$

Representation

$$
\begin{aligned}
\operatorname{range}(A) & =\left\{A w \mid w \in \mathbf{R}^{q}\right\} \\
& =\left\{w_{1} a_{1}+\cdots+w_{q} a_{q} \mid w_{i} \in \mathbf{R}\right\} \\
& =\operatorname{span}\left(\left\{a_{1}, a_{2}, \ldots, a_{q}\right\}\right)
\end{aligned}
$$

where $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{q}\end{array}\right]$

$$
\begin{aligned}
\text { nullspace }(B) & =\{x \mid B x=0\} \\
& =\left\{x \mid b_{1}^{T} x=0, \ldots, b_{p}^{T} x=0\right\}
\end{aligned}
$$

where $B=\left[\begin{array}{c}b_{1}^{T} \\ \vdots \\ b_{p}^{T}\end{array}\right]$

Affine sets

$S \subseteq \mathbf{R}^{n}$ is affine if

$$
x, y \in S, \quad \lambda, \mu \in \mathbf{R}, \quad \lambda+\mu=1 \Longrightarrow \lambda x+\mu y \in S
$$

Geometrically: $x, y \in S \Rightarrow$ line through $x, y \subseteq S$

Representations

range of affine function

$$
S=\left\{A z+b \mid z \in \mathbf{R}^{q}\right\}
$$

via linear equalities

$$
S=\left\{x \mid b_{1}^{T} x=c_{1}, \ldots, b_{p}^{T} x=c_{p}\right\}
$$

Convex sets

$S \subseteq \mathbf{R}^{n}$ is a convex set if

$$
x, y \in S, \quad \lambda, \mu \geq 0, \quad \lambda+\mu=1 \Longrightarrow \lambda x+\mu y \in S
$$

Geometrically: $x, y \in S \Rightarrow$ segment $[x, y] \subseteq S$
... many representations
$S \subseteq \mathbf{R}^{n}$ is a convex cone if

$$
x, y \in S, \quad \lambda, \mu \geq 0, \quad \Longrightarrow \lambda x+\mu y \in S
$$

Geometrically:

$x, y \in S \Rightarrow$ 2-dim. 'pie slice' between $x, y \subseteq S$

...many representations

Hyperplanes and halfspaces

Hyperplane $\left\{x \mid a^{T} x=b\right\}(a \neq 0)$
affine; subspace if $b=0$
useful representation: $\left\{x \mid a^{T}\left(x-x_{0}\right)=0\right\}$
a is normal vector; x_{0} lies on hyperplane

Halfspace $\left\{x \mid a^{T} x \leq b\right\}(a \neq 0)$
convex; convex cone if $b=0$
useful representation: $\left\{x \mid a^{T}\left(x-x_{0}\right) \leq 0\right\}$
a is (outward) normal vector; x_{0} lies on boundary

Intersections

$$
S_{\alpha} \text { is }\left(\begin{array}{l}
\text { subspace } \\
\text { affine } \\
\text { convex } \\
\text { convex cone }
\end{array}\right) \text { for } \alpha \in \mathcal{A} \Longrightarrow \bigcap_{\alpha \in \mathcal{A}} S_{\alpha} \text { is }\left(\begin{array}{l}
\text { subspace } \\
\text { affine } \\
\text { convex } \\
\text { convex cone }
\end{array}\right)
$$

Example: polyhedron is intersection of finite number of halfspaces

$$
\begin{aligned}
\mathcal{P} & =\left\{x \mid a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, k\right\} \\
& =\{x \mid A x \preceq b\}
\end{aligned}
$$

(\preceq means componentwise)
a bounded polyhedron is called a polytope

In fact, every closed convex set S is (usually infinite) intersection of halfspaces:

$$
S=\cap\{\mathcal{H} \mid \mathcal{H} \text { halfspace, } S \subseteq \mathcal{H}\}
$$

(more later)

Example: $S=\left\{a \in \mathbf{R}^{m}| | p(t) \mid \leq 1\right.$ for $\left.|t| \leq \pi / 3\right\}$, $p(t)=\sum_{k=1}^{m} a_{k} \cos k t$.

can express S as intersection of slabs: $S=\bigcap_{|t| \leq \pi / 3} S_{t}$,

$$
S_{t}=\{a \mid-1 \leq[\cos t \cdots \cos m t] a \leq 1\}
$$

Combinations and hulls

$y=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}$ is a

- linear combination of x_{1}, \ldots, x_{k};
- affine combination if $\sum_{i} \lambda_{i}=1$;
- convex combination if $\sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0$;
- conic combination if $\lambda_{i} \geq 0$.
(Linear,...) hull of S :
set of all (linear, ...) combinations from S

$$
\begin{array}{ll}
\text { linear hull: } & \operatorname{span}(S) \\
\text { affine hull: } & \text { Aff }(S) \\
\text { convex hull: } & \operatorname{Co}(S) \\
\text { conic hull: } & \operatorname{Cone}(S)
\end{array}
$$

$$
\mathbf{C o}(S)=\cap\{G \mid S \subseteq G, G \text { convex }\}, \ldots
$$

Example

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

what is linear, affine, ..., hull?

Ellipsoids

$$
\begin{aligned}
& \quad \mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} A^{-1}\left(x-x_{c}\right) \leq 1\right\} \\
& \left(A=A^{T} \succ 0 ; x_{c} \in \mathbf{R}^{n} \text { center }\right)
\end{aligned}
$$

- semiaxis lengths: $\sqrt{\lambda} ; \lambda_{i}$ eigenvalues of A
- volume: $\alpha_{n}\left(\Pi \lambda_{i}\right)^{1 / 2}=\alpha_{n}(\operatorname{det} A)^{1 / 2}$

Other descriptions

- $\mathcal{E}=\left\{B u+x_{c} \mid\|u\| \leq 1\right\}\left(\|u\|=\sqrt{u^{T} u}\right)$
- $\mathcal{E}=\{x \mid f(x) \leq 0\}$

$$
\begin{aligned}
f(x) & =x^{T} C x+2 d^{T} x+e \\
& =\left[\begin{array}{l}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{ll}
C & d \\
d^{T} & e
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]
\end{aligned}
$$

$$
\left(C=C^{T} \succ 0, e-d^{T} C^{-1} d<0\right)
$$

Exercise: convert among representations; give center, semiaxes, volume.

Polyhedra

Examples

- nonnegative orthant $\left\{x \in \mathbf{R}^{n} \mid x \succeq 0\right\}$
- k-simplex $\operatorname{Co}\left\{x_{0}, \ldots, x_{k}\right\}$ with x_{0}, \ldots, x_{k} affinely independent, i.e.,

$$
\operatorname{rank}\left(\left[\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{k} \\
1 & 1 & \cdots & 1
\end{array}\right]\right)=k+1
$$

or equivalently, $x_{1}-x_{0}, \ldots, x_{k}-x_{0}$ lin. indep.

- standard simplex $\left\{x \in \mathbf{R}^{n} \mid x \succeq 0, \sum_{i} x_{i}=1\right\}$ also called probability simplex

Norm balls

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a norm if

1. $f(x) \geq 0, f(x)=0 \Longrightarrow x=0$
2. $f(t x)=|t| f(x)$, for all t
3. $f(x+y) \leq f(x)+f(y)$
(2),(3) \Rightarrow the ball $\left\{x \mid f\left(x-x_{c}\right) \leq 1\right\}$ is convex.

Examples

- on $\mathbf{R}^{n}:\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p} \quad(p \geq 1)$; $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

- on $\mathbf{R}^{m \times n}$: spectral norm

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}
$$

If $f(x)$ is a norm then

$$
S=\{(x, t) \mid f(x) \leq t\}
$$

is a convex cone.
e.g., Euclidean norm: the second-order cone, also called quadratic or Lorentz cone

$$
\begin{aligned}
S & =\left\{(x, t) \mid \sqrt{x^{T} x} \leq t\right\} \\
& =\left\{(x, t) \left\lvert\,\left[\begin{array}{l}
x \\
t
\end{array}\right]^{T}\left[\begin{array}{cc}
I & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
t
\end{array}\right] \leq 0\right., t \geq 0\right\}
\end{aligned}
$$

Affine transformations

suppose f is affine, i.e., linear plus constant:

$$
f(x)=A x+b
$$

if S, T convex, then so are

$$
\begin{aligned}
f^{-1}(S) & =\{x \mid A x+b \in S\} \\
f(T) & =\{A x+b \mid x \in T\}
\end{aligned}
$$

Example: coordinate projection

$$
\left\{x \left\lvert\,\left[\begin{array}{l}
x \\
y
\end{array}\right] \in S\right. \text { for some } y\right\}
$$

Linear matrix inequalities

$$
\mathcal{P}=\left\{A \in \mathbf{R}^{n \times n} \mid A=A^{T}, A \succeq 0\right\}
$$

is a convex cone, called the positive semidefinite (PSD) cone. ($A \succeq 0$ means positive semidefinite.)

$$
\mathcal{P}=\bigcap_{z \in \mathbf{R}^{n}}\left\{A=A^{T} \mid z^{T} A z=\sum_{i, j} z_{i} z_{j} A_{i j} \geq 0\right\}
$$

i.e., intersection of infinite number of halfspaces in $\mathbf{R}^{n \times n}$

Hence, if $A_{0}, A_{1}, \ldots, A_{m}$ symmetric, the solution set of the linear matrix inequality

$$
A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m} \succeq 0
$$

is convex

Projective transformation

$$
\begin{array}{r}
f: \mathcal{H} \rightarrow \mathbf{R}^{n}, \mathcal{H}=\left\{x \mid c^{T} x+d>0\right\} \\
f(x)=\frac{A x+b}{c^{T} x+d}
\end{array}
$$

Line segments preserved: for $x, y \in \mathcal{H}$,

$$
f([x, y])=[f(x), f(y)]
$$

Hence, if C convex, $C \subseteq \mathcal{H}$, then $f(C)$ convex.

Separating hyperplanes

$$
\begin{aligned}
& S, T \text { convex, } S \cap T=\emptyset \\
\Rightarrow & \exists a \neq 0, b:\left\{\begin{array}{l}
x \in S \Rightarrow a^{T} x \geq b \\
x \in T \Rightarrow a^{T} x \leq b
\end{array}\right.
\end{aligned}
$$

i.e., hyperplane $\left\{x \mid a^{T} x-b=0\right\}$ separates S, T

stronger forms use strict inequality, require conditions on S, T

Supporting hyperplane

Hyperplane $\left\{x \mid a^{T} x=a^{T} x_{0}\right\}$ supports S at $x_{0} \in \partial S$ if

$$
x \in S \Rightarrow a^{T} x \leq a^{T} x_{0}
$$

halfspace $\left\{x \mid a^{T} x \leq b\right\}$ contains S for $b=a^{T} x_{0}$ but not for smaller b
S convex $\Rightarrow \exists$ supporting hyperplane for each $x_{0} \in \partial S$
If S closed, int $S \neq \emptyset$, then
S convex $\Leftarrow \exists$ supporting hyperplane for each $x_{0} \in \partial S$

Generalized inequalities

suppose convex cone $K \subseteq \mathbf{R}^{n}$

- is closed
- has nonempty interior
- is pointed: there is no line in K
K defines generalized inequality \preceq_{K} in \mathbf{R}^{n} :

$$
x \preceq_{K} y \Longleftrightarrow y-x \in K
$$

strict version:

$$
x \prec_{K} y \Longleftrightarrow y-x \in \operatorname{int} K
$$

examples:

- $K=\mathbf{R}_{+}^{n}: x \preceq_{K} y$ means $x_{i} \leq y_{i}$
(componentwise vector inequality)
- K is PSD cone in $\left\{X \in \mathbf{R}^{n \times n} \mid X=X^{T}\right\}$:
$X \preceq_{K} Y$ means $Y-X$ is PSD
(these are so common we drop K)
many properties of \preceq_{K} similar to \leq on \mathbf{R}, e.g.,
- $x \preceq_{K} y, u \preceq_{K} v \Longrightarrow x+u \preceq_{K} y+v$
- $x \preceq_{K} y, y \preceq_{K} x \quad \Longrightarrow \quad x=y$
unlike \leq, \preceq_{K} is not in general a linear ordering

Dual cones and inequalities

if K is a cone, dual cone is defined as

$$
K^{\star}=\left\{y \mid x^{T} y \geq 0 \text { for all } x \in K\right\}
$$

for $K=\mathbf{R}_{+}^{n}, K^{\star}=K$, since

$$
\sum_{i} x_{i} y_{i} \geq 0 \text { for all } x_{i} \geq 0 \quad \Longleftrightarrow \quad y_{i} \geq 0
$$

for $K=\mathrm{PSD}$ cone, $K^{\star}=K$
(called self-dual cones)

