MS-E1621, Algebraic Statistics

Fill out http://presemo.aalto.fi/aslecl



Goals

After the course, you can:
@ list fopics in algebraic statistics

@ recognize problems in statistics that are answerable by algebraic
methods

@ assess which algebraic methods are suitable for solving a problem

@ apply basic algebraic tools o solve a problem



Material

Main textbook: Seth Sullivant "Algebraic Statistics” (e-book available
through Aalto library)

I will upload slides/worksheets after each lecture

Background on algebra: Cox, Little, O'Shea "Ideals, Varieties, and
Algorithms”

See MyCourses/Material for additional books

Algebraic Statistics Seminar every two weeks



Lectures

Lecture 1: Algebra

Lecture 2: Probability (reading pre-task)
Lecture 3: Conditional independence
Lecture 4: Statistics (reading pre-task)
Lecture 5: Exponential families

Lecture 6: Likelihood inference

Fishers exact test (reading task)
Graphical models

Group presentations on selected chapters (topics around lecture 4 and 5)



Homework

There will be six homework sets.

Deadline for submitting homework is Fridays at 6pm (not every Friday since
the course runs through two periods).

Submissions only through MyCourses.
It is recommended that solutions are typed.
' You can resubmit two weeks after we return the solutions.

' There will be additional reading assignments and group work.



Exercise sessions

@ EXxercise session 1: Introduction to Macaulay?2

@ Exercise session 2, 4, 6 etc: You have the possibility to discuss in
groups anything that remains unsolved and include the results of
the group work in their solutions. Everyone has to write up their
own solutions.

@ Exercise sessions 3, 5, 7 etc: No organized activity. Possibility to ask
questions.



Clgslel=

@ This course is graded pass/fail.
@ For passing the course, one has to
@ attend at least 10 lectures,
@ receive at least 70% of maximal possible points on homework sets and
@ complete all additional assignments.
@ Additional reading assignments and the group project are not graded by poinfts.

@ There IS no exam.



Communication

® The communication for this course takes place in Zulip.

https://algstat-msel621.zulipchat.com
® There is a separate channel for each problem set and assignment.

@ Please be active asking your questions!


https://algstat-mse1621.zulipchat.com
https://algstat-mse1621.zulipchat.com

Any questions about the
organization?



Motivating example 1: Discrete
Markov chain

Let X, X5, X5 be a sequence of random variables taking values in 2 = {0, 1}
> There are 8 joint probabilities p;y = PX,=1,X,=j,X; =k) where i,j,k € {0,1}
A probability distribution associated to X, X,, X5 corresponds fo a point in RS
The sequence X, X,, X5 is a Markov chain if
PG =X51X =20 X, = %) = P(X; = x6k; = %)

> When is a point in RS the probability distribution associated to a Markov chain?



Motivating example 1: Discrete
Markov chain

3 Conditional probabilities can be expressed in terms of the joint probabilities:

. : pzjk
PiXs=klX =1,X, =)= , Where p;;, = Z Pl

Pij+ ke{0,1)
. e
Markov chain condition: o
Pij+ P+j+
B e . . . . >
® This gives —— = (consider previous equality for 1 and 1)
pzj+ pi’j+

> Simplifying gives pyooP101 = PooiPioo = U and py1oP111 = Po11Pi1o = U



Motivating example 1: Discrete
Markov chain

@ A point p € RS is the probability distribution associated to a Markov chain if and only if

@ piix =0 for all i,j,k € {0,1},

® PoooP101 — Poo1P1oo = O

® PoroP111 — Po11P11o = 0

This Markov chain model is a : It is a solution set of a system of polynomial
equations and inequalities.



Motivating example 1: Discrete
Markov chain

@ This is an example of a conditional independence model (Lecture 3)

@ Fitting the model to data: Assuming there is a frue unknown
probability distribution p in our model from which our data is

generated. What is p? (Likelihood inference in Lecture 6)

@ How well does the model fit the data? (Fishers exact test in Lecture
7)



Motivating example 2: Graphical
models

Friday, June 5, 2020: Caroline Uhler (MIT/ETH)

= -Speaker: Caroline Uhler (MIT/ETH)
- Title: Permutations and Posets for Causal Structure Discovery
- Abstract: Gene knockout experiments allow performing interventions in large-scale systems. This represents a unique opportunity for causal structure discovery, since it
allows testing algorithms with real data and in relevant settings. We discuss the rich combinatorial, algebraic and geometric questions underlying causal structure discovery.
In particular, we show that viewing causal structure discovery as an optimization problem over permutations (in the fully observed setting) or posets (in the presence of
unobserved variables) can lead to algorithms with stronger consistency guarantees than previously known, which translates into better performance in terms of predicting
the effect of a gene knockout experiment.

A Caroline Uhler (MIT/ETH), 5 June 2020

A l g e b ra l C S 1'01' l s 1' | C S _ for Causal Structure Qiscovew: for Causal Structure Discovery:
Application to Drug Repurposing for COVID19 Application to Drug Repurposing for COVID-19

S em i n Clr O n l i n e b > Caroline Uhler (ETH Zurich & MIT) : Caroline Uhler
Past Talks and
Recordings

Caroline Uhler (MIT) C L MIT, January 2019




Polynomials

field K (usually Q, R, C)

polynomial variables or indeterminates p{, ps, ..., P,

' monomial: p“ ::plulpz’ftz...pl’j‘r where u = (uy, Uy, ..., u,) € N
polynomial in py, ps, ..., p, over [K: f = Z c,p" where A is a finite subset of
UcEA

N" and each coefficient ¢, € [

' polynomial ring: K[p] := K[p{,py, ..., p,]



Worksheet

You will work on worksheets in groups of 3-4 persons

In MyCourses/Worksheets choose the worksheet according to the Breakout room
number

' Edit the worksheet together with your group members in Overleaf
' You can use any tools you want (Mathematica etc)
Ardi, Luca, Olga and myself will help you

No worries if you cannot solve everything - last exercises will go to



Algebraic varieties

Let S C K[p] be a set of polynomials. The defined by S is
VIS)={aeK :fla)=0 VfelS}.
® The variety V(S) is also called the zero set of §.

@ A variety depends on the field.

@ Often the field is clear from the context. If want to emphasize the field, then
write VK(S)



Ideals

Def: A subset [/ of a ring R is an ideal if
® f+gel Vfgel
 hfel Vfeland hER
Def: Let W C [K'. The vanishing ideal of W is
IW)={feKlp]:fla)=0 Vae Wj}.

@ [(W) is an ideal



Generating sets

k
Def: Let S be a set of polynomials. Then we set (5) = { Z hi:f,€S,heKlpl}.
pt

@ The set (S) is an ideal. It is called the ideal generated by S.

@ (S) C I(V(S))

@ We say that an ideal I is finitely generated if there exists finite $ such that
I = (S). Hilbert Basis Theorem says that every ideal in K[p] is finitely generated.



Radical ideals

Def: An ideal I is called radical if f* € I for some polynomial f and positive integer k
implies [ € 1.

Def: The radical of an ideal [, denoted \/}, is the smallest radical ideal that contains I:
\/}= {(fe K[p]:f*el for some k € N}.
Prop: Given any field K and set W C K', the vanishing ideal /(W) is radical.

Nullstellensatz: If [ is algebraically closed, then the vanishing ideal of the variety of
an ideal is the radical of the ideal, i.e. /(V(/)) = \/}



Ideal-variety correspondence

Theorem: Let [K be an algebraically closed field. Then the maps V and /

are inclusion-reversing bijections between the setf of radical ideals and
the set of varieties.



Univariate division algorithm

Input: A polynomial f and a finite set of polynomials & = {gy, ..., g}

k

Output: A representation | = Z h.g; + r such that no term of r is divisible by the highest
=1

degree term of any of the polynomials in &

Algorithm:
@ Set h; =0 for all i and r = .

@ While r has a term ¢, p“ divisible by a highest degree term in(g;) of some g;, replace
h; by h; + c,p®/in(g;) and r by r —c,p°/in(g;) - &




Grobner bases

@ Main computational fool for computations with ideals

Def: Let I C [K[p] be an ideal. A finite subset & of I is called a Grobner
basis if dividing f by & gives remainder O for all f € I.

@ It follows that & is a generating set of I.

® See Chapter 3.3 for the definition in the multivariate case. In this
course we use Grobner bases as a black box. They will be covered in
detail in Computational Algebraic Geometry (period III).



Elimination ideal

® Let r: K™ — K" be the coordinate projection
(), - 4@, 507 80D, ) = (ay; .-, G

Prop: Let V C K12 be a variety and let
I:=1(V) C K|p;, 5 Dy sy ‘“’%2] be its vanishing ideal. Then

I(=(V)) = I1nK[p].

@ The ideal INIK[p] is called an elimination ideal.



Pre-task for next time

Read Chapters 2.1-2.4

Write at least three questions that remained unclear in the text and submit in
MyCourses before the start of the lecture

Next time:
@ we Wwill discuss these questions in groups in Breakout rooms
@ work on first tasks connecting probability and algebra

Alternative pre-task if you already have strong background in probability: Read and
write three questions for Chapters 3.1-3.4



