

CS-E5865 Computational genomics

Autumn 2020, Lecture 3: Sequence alignment Lecturer: Pekka Marttinen Assistants: Alejandro Ponce de León, Zeinab Yousefi, Onur Poyraz

Lecture 3, 2020

Sequence Alignment

Given two sequences $x = x_1x_2...x_n$, $y = y_1y_2...y_m$, an alignment is an assignment of gaps in the 2 sequences so that we line up each letter in one sequence with either a letter or a gap in the other sequence

> AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Sequence alignment

- The purposes of sequence alignment
 - to measure the similarity of two sequences
 - to reveal which parts of the sequences match and which do not
- Commonly used way to visualize pairwise alignments on the right:

"|" denote matching pair of symbols

"-" denotes a gap symbol inserted in the sequence to improve alignment GAATTCAG GA | | | | | | | GGA-TC-G GC GAATTC-A GA | | | | | | | GGA-TCGA GC

GAATTCAG | || | | GCAT-C-G

GAATTC-A | || | | GCAT-CGA

Global and local alignment

- Two types of alignment:
- Global alignment aims to maximize the alignment quality over the whole sequences
 - leaving gaps typically penalized
- Local alignment tries to match sub-regions of the sequences
 - gaps typically not penalized

Global FTFTALILLAVAV F--TAL-LLA-AV Local FTFTALILL-AVAV --FTAL-LLAAV--

Global alignment scoring functions

- By inserting gaps in different • places, we get different alignments
- We wish to find the best one •
- We define a scoring function • $\sigma(x,y)$ for any pair of symbols in the alignment
- The alignment score is the sum

$$M = \sum_{i=1}^{c} \sigma(x_i, y_i)$$

where i indexes the positions in the alignment

•	•	 -TC	•	
		TC II		

GAATTCAG

GAATTCAG GCAT-C-G

11 GGA-TCGA GAATTC-A GCAT-CGA

Global alignment scoring functions: example

• Scoring Function:

Match: +m Mismatch: -s Gap: -d

Score

 $M = (\# matches) \times m + (\# mismatches) \times (-s) + (\# gaps) \times (-d)$

Substitution matrices

- We can collect the scores of the scoring function σ into a matrix (on the right for our example)
- Matrix S containing the σ values is called the substitution matrix
- For DNA simple scoring schemas are typically used
- For amino acids richer substitution matrices are used
 - PAM
 - BLOSUM

$$S = \begin{bmatrix} a_1 & a_2 & \dots & a_l & -\\ \hline a_1 & \sigma(a_1, a_1) & \sigma(a_1, a_2) & \dots & \sigma(a_1, a_l) & \sigma(a_1, -)\\ a_2 & \sigma(a_2, a_1) & \sigma(a_2, a_2) & \dots & \sigma(a_2, a_l) & \sigma(a_2, -)\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ a_l & \sigma(a_l, a_1) & \sigma(a_l, a_2) & \dots & \sigma(a_l, a_l) & \sigma(a_l, -)\\ - & \sigma(-, a_1) & \sigma(-, a_2) & \dots & \sigma(-, a_l) & \sigma(-, -) \end{bmatrix}$$

Substitution matrices: Example

- In general, the scores can depend on the pair of symbols
- Consider the following substitution matrix

	А	G	С	Т	-
А	10	-1	-3	-4	-5
G	-1	7	-5	-3	-5
С	-3	-5	9	0	-5
Т	-4	-3	0	8	-5

• Then the alignment: AGACTAGTTAC CGA - - -GACGT would have the following score:

> $S(A,C) + S(G,G) + S(A,A) + 3^{*}(-5) + S(G,G) + S(T,A) + S(T,C) + S(A,G) + S(C,T)$ = -3 +7 + 10 -3^{*}5 +7 -4 +0 -1 +0 = 1

Optimal global alignment

- The optimal alignment A* between two sequences x and y is the alignment A(s,t) that maximizes the alignment score M over all possible alignments.
- There are $\binom{2n}{n}$ possible alignments between two sequences of length n, so brute-force enumeration of all of them is not feasible
- Can be solved efficiently by using the Needleman-Wunsch algorithm, which is based on dynamic programming (we take a closer look in the following)
 - Basic idea: solve the problem prefixes of length 1,2,...,n incrementally making use of the optimal solutions for the prefixes

Dynamic programming to the rescue

- General recipe for solving complex optimization problems where there is internal subset structure
 - e.g. subsequences of a larger sequence
- Iterate the following for k=1,...,n-1
 - Solve the smaller subproblems of size k
 - e.g. optimal alignments of subsequences of length k
 - Extend the optimal solutions for size k problems to optimal solutions of size k+1 problems

- Let us find the optimal global alignment for two sequences
 s = ATTCGT
 t = CTTAGCT
- Let us assume the simple substitution matrix with score:
 +1 for matching a symbol with itself,
 -1 for matching symbol with a different symbol or a gap
- The matrix M stores the intermediate alignment scores:
 M(i i) stores the optimal alignment score of subscore and to the
 - M(i,j) stores the optimal alignment score of $s_1...s_{i-1}$ and $t_1...t_{j-1}$

- First consider aligning the beginning of the two sequences
- We have three choices
 - 1. match s₁ against a gap before t₁: $M(2,1) = \sigma(A', A', A') = -1$
 - 2. match t_1 against a gap before s_1 : M(1,2) = $\sigma('-','C') = -1$
 - 3. match the first symbols with each other: $M(2,2) = \sigma(A',C') = -1$
- For now, all the

three choices give us

the same score

M(1,2) = M(2,1) = M(2,2) = -1

t = CTTAGCTs = ATTCGTlt = -CTTAGCTs = -ATTCGTlt = CTTAGCTs = ATTCGT

s = ATTCGT

- To extend the alignment M(2,1) we have again three choices
 - 1. match s₂ against a gap before t₁, score M(3,1) = M(2,1)+ $\sigma('T', '-') = -2$,
 - 2. match t₁ against a gap before s₂, score $M(2,1)+\sigma(-,C') = -2 < M(2,2)$
 - 3. match s₂ against t₁, score: $M(3,2) = M(2,1) + \sigma(`T',`C') = -2$
- Notice that the second choice gives an

alignment for s_1 and t_1 with a score inferior

to what we have already found and stored in

M(2,2) – we ignore this choice.

s = ATTCGT | | t = --CTTAGCT s = A-TTCGT | | t = -CTTAGCT s = ATTCGT | | t = -CTTAGCT

Μ	-	С	Т	Т	Α	G	С	Т
-	0	-1						
А	-1	-1						
Т	-2	-2						
Т								
С								
G								
Т								

- To extend the alignment M(1,2) the three choices are
 - 1. match s₁ against a gap before t₂, score M(1,2)+ $\sigma(A', -) = -2 < M(2,2)$
 - 2. match t₂ against a gap before s₁, score M(1,3) = M(1,2)+ $\sigma((-', 'T') = -2$
 - 3. match s₁ against t₂ with, score: $M(2,3) = M(1,2) + \sigma(A', T') = -2$
- The first choice gives yet another

alignment for s_1 and t_1 with inferior score to

what we have already found and stored in M(2,2) -> no update.

> Aalto University School of Science

s = -ATTCGT

- t = C TTAGCT
- s = --ATTCGT
- t = CTTAGCT
- s = -ATTCGT
- t = CTTAGCT

- To extend the alignment M(2,2) the three choices are
 - 1. match s₂ against a gap before t₂, score M(2,2)+ $\sigma('T', '-') = -2 = M(3,2)$
 - 2. match t₂ against a gap before s₂, score $M(2,2)+\sigma(-,T') = -2 = M(2,3)$
 - 3. match s₂ against t₂ with, score: $M(3,3) = M(2,2) + \sigma('T','T') = 0$
- The two first choices give us alignment
- scores that match the best scores found so

far – these correspond to alternative optimal alignments

> Aalto University School of Science

s = ATTCGT

- t = C TTAGCT
- s = A TTCGT
- t = CTTAGCT
- s = ATTCGT
- t = CTTAGCT

- We can continue in the same way:
 - consider three possible options to extend an alignment M(i,j) to M(i+1,j), M(i,j+1) and M(i+1,j+1)
 - check if we have found a better alignment before
- Iterating the process we eventually fill in the matrix M
- From the bottom right corner we find the optimal global alignment score for the two sequences

Μ	-	С	Т	Т	Α	G	С	Т
-	0	-1	-2	-3	-4	-5	-6	-7
А	-1	-1	-2	-3	-2	-3	-4	-5
Т	-2	-2	0	-1	-2	-3	-4	-3
Т	-3	-3	-1	1	0	-1	-2	-3
С	-4	-2	-2	0	0	-1	0	-1
G	-5	-3	-3	-1	-1	1	0	-1
Т	-6	-4	-2	-2	-2	0	0	1

Alternative look

- Alternatively, we could fill in the matrix by considering the 3 different ways how the optimal alignment M(i,j) can arise via three different paths:
 - Extending optimal alignment between $x_1...x_{i-2} \& y_1...y_{j-2}$ by aligning x_{i-1} with y_{j-1}
 - Extending optimal alignment between $x_1...x_{i-2} \& y_1...y_{j-1}$ by aligning x_{i-1} with a gap
 - Extending optimal alignment between $x_1...x_{i-1} & y_1...y_{j-2}$ by aligning y_{j-1} with a gap
- Optimal alignment score is then given by

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_{i-1}, y_{j-1}) \\ M(i-1, j) + s(x_{i-1}, '-') \\ M(i, j-1) + s('-', y_{j-1}) \end{cases}$$

	М	-	С	Т	Т	Α	G	С	Т
	-	0	-1	-2					
	А	-1	-1 🦷	-2					
	Т	-2	-2	0					
	Т								
	С								
Aalto Ur School	G								
-	Т								

Components of dynamic programming

- The dynamic programming approach has 3 essential components:
- **1.** Recurrence relation: How can we compute M(i,j) knowing only the values M(i',j') with i' ≤ i and j' ≤ j?
- 2. Tabular computation: How to store efficiently the computed values in order to avoid computing them over and over again?
- **3.** Traceback: How to find the actual alignment of the 2 sequences after we have computed the similarity values?

The recurrence relation

- We need to establish a recursive relationship between the value M(i,j) with $i,j\geq 1$ (i.e., the similarity between $x_1x_2...x_{i-1}$, and $y_1y_2...y_{j-1}$) and values of M with index pairs smaller than i,j.
- Base conditions:
 - a. M(1, 1) = 0
 - b. $M(1, j) = -j \times d$
 - c. $M(i, 1) = -i \times d$

where --d is the score of a gap

 The recurrence relation for M(i,j) with i, j > 1 based on the principle of optimality:

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_{i-1}, y_{j-1}) \\ M(i-1, j) - d \\ M(i, j-1) - d \end{cases}$$

Tabular computation

- We fill in the table M(i,j), with 0≤i≤n and 0≤j≤m, in an increasing order of pairs (i,j).
- First, we initialize first row and column according to the base cases of the recurrence relation:
 - a. M(1, 1) = 0b. $M(1, j) = -j \times d$ c. $M(i, 1) = -i \times d$

Tabular computation

 The values of the inner cells M(i,j) (i,j > 0) can be computed in any order as long as the three values required by the recurrence relation have been computed:

Needleman-Wunsch global alignment algorithm

<u>Input</u>: x,y = sequences to align and sigma, gapsigma = alignment scores for non-gaps and gaps <u>Output</u>:

```
- M = dynamic programming matrix of optimal alignment scores
```

```
- TB = matrix storing the traceback path
```

```
n = length(x); m = length(y);
```

Initialization:

M(1, 1) = 0

```
for j = 2:m+1 M(1,j) = gapsigma* j; % penalty of gaps preceding s
for i = 2:n+1 M(i,1) = gapsigma* i; % penalty of gaps preceding t
<u>Main iteration:</u> Filling-in partial alignments
For each i = 2.....n+1
For each j = 2.....m+1
M(i, j) = max \begin{cases} M(i-1,j-1) + s(x_{i-1}, y_{j-1}) & [case 1] \\ M(i-1, j) + s(x_{i-1}, '-') & [case 2] \\ M(i, j-1) + s('-', y_{j-1}) & [case 3] \end{cases}
TB(i,j) = MAG, \quad if [case 1] \\ UP, \quad if [case 2] \\ LEFT, \quad if [case 3] \end{cases}
```

Traceback: recovering the alignment

 Outputting the alignment corresponding to the optimal score requires parsing back the path that we took when computing the value for the cell

s = ATTCGT	s = ATTCG-T	М	-	С	т	Т	Α	G	С	Т
t = CTTAGCT	t = CTTAGCT	-	0 🦷	-1	-2	-3	-4	-5	-6	-7
s = ATTCG-T	s = ATTCG-T	А	-1	-1 🦷	-2	-3	-2	-3	-4	-5
 t = CTTAG <mark>CT</mark>	$t = CTTAGCT$	Т	-2	-2	7 0	-1	-2	-3	-4	-3
		Т	-3	-3	-1	1	0	-1	-2	-3
s = ATTCG-T 	s = ATTCG-T	С	-4	-2	-2	0	7 0	-1	0	-1
t = CTTA <mark>GCT</mark>	t = CTTAGCT	G	-5	-3	-3	-1	-1	1 ←	<u> </u>	-1
s = ATT <mark>CG-T</mark>		Т	-6	-4	-2	-2	-2	0	0	1
t = CTTAGCT										

When does dynamic programming work?

- Key property: optimal solution for the whole problem can be decomposed into optimal solutions for subproblems
- In our case: optimal alignment of the whole sequence is composed of
 - optimal alignment of prefixes of two strings
 - optimal alignment of the last symbols of the strings
- Our score function decomposes
 - the symbols outside the subset do not affect the optimality of the alignment
 s = -ATTCGT
 - this would not be the case if we allowed the

the alignments of the symbols to cross arbitrarily

s = -ATTCGT $| \times \times |$ t = CTTAGCT

Local alignment

- A local alignment of two sequences s and t is a global alignment s_(i:j) and t_(k:l) for some choice of (i,j) and (k,l)
- The optimal local alignment A is given by the choice of (i,j) and (k,l) that maximize the alignment score M(A(s_(i:j), t_(k:l)))
- Optimal local alignments can be found by a dynamic programming algorithm called Smith-Waterman that is only a minor modification of the Needleman-Wunch global alignment algorithm

Smith-Waterman local alignment

- Simple modification to the global alignment
- An additional update condition preventing the score from getting negative values

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + \sigma(s_{i-1}, t_{j-1}) \\ M(i-1, j) + \sigma(s_{i-1}, `-`) \\ M(i, j-1) + \sigma(`-`, t_{j-1}) \\ 0 \end{cases}$$

- Interpretation: if extending the current global alignment yields a negative score, better score is obtained by starting a new alignment region
 - Ignore badly aligning regions

Smith-Waterman local alignment

- The value in M(i,j) denotes the score of local alignments that end at the symbols s_{i-1} and t_{i-1}
- The largest values in the matrix denote the optimal local alignment end points
- In our example, we have three possible end points, corresponding to three different local alignments

= ATTCG-T

t = CTTAGCT

es the	М	-	С	Т	Т	A	G	С	Т
that nd t _{j-1}	-	0	0	0	0	0	0	0	0
matrix	A	0	0	0	0	1	0	0	0
	Т	0	0	1	1	0	0	0	1
three	Т	0	0	1	2	1	0	0	1
	С	0	1	0	1	1	0	1	0
fferent	G	0	0	0	0	0	2	1	0
	Т	0	0	1	1	0	1	1	2
s = ATTCO	GΤ		s = ATTCGT						

t.

= CTTAGCT

S

CTTAGCT

=

Traceback for finding the local alignment

- Start with the largest value in the matrix
 - corresponds to the last position in the alignment region
- 2. Trace back until a zero is found
- 3. Here we have multiple maximum values
 - each one corresponds to a different, equally good local alignment
 - to break ties, picking the longest one might be a good policy

м	-	С	Т	Т	A	G	С	Т
-	0	0	0	0	0	0	0	0
A	0	ok	0	0	1	0	0	0
Т	0	0		1	0	0	0	1
Т	0	0	1	NK	1	0	0	1
С	0	1	0	1	74	0	1	0
G	0	0	0	0	0	`² ←	1	0
Т	0	0	1	1	0	1	1	R

Smith-Waterman local alignment algorithm

Input: s,t = sequences to
align and sigma, gapsigma
= alignment scores for
non-gaps and gaps

Output:

TB(i,j):

- M = dynamic programming matrix of optimal alignment scores
- TB = matrix storing the traceback path

- 1 denotes match

- 2 denotes match

- 3 denotes match

('-',t(j-1)),

(s(i-1), t(j-1)),

(s(i-1), '-'),

n = length(s); m = length(t); Initialization: M = zeros(n+1,m+1); % initialize with zeros TB = zeros(n+1, m+1);Main iteration: For each $i = 2 \dots n+1$ For each j = 2.....m+1
$$\begin{split} \mathsf{M}(\mathsf{i},\,\mathsf{j}) &= \max \begin{cases} \mathsf{M}(\mathsf{i}\text{-}1,\mathsf{j}\text{-}1) + \mathsf{s}(\mathsf{s}_{\mathsf{i}\text{-}1},\,\mathsf{t}_{\mathsf{j}\text{-}1}) \\ \mathsf{M}(\mathsf{i}\text{-}1,\,\mathsf{j}) + \mathsf{s}(\mathsf{s}_{\mathsf{i}\text{-}1},\,\,\overset{\cdot}{\mathsf{-}}\,\,) \\ \mathsf{M}(\mathsf{i},\,\mathsf{j}\text{-}1) + \mathsf{s}(\overset{\cdot}{\mathsf{-}}\,\,,\,\mathsf{t}_{\mathsf{j}\text{-}1}) \\ \mathsf{0} \end{cases} \end{split}$$
[case 1] [case 2] [case 3] [case 4] if [case 1] = 2, 3, TB(i,j) if [case 2] if [case 3] if [case 4]

Gap penalty schemes

- So far we have used a simple gap penalty scheme, where each gap symbol incurs a constant penalty
 - We may over-penalize gaps that are several symbols long
- In practice, an affine gap penalty scheme is frequently used
- Affine gap penalty is composed of
 - gap opening penalty: paid by the first gap in a sequence of gaps
 - gap extension penalty: paid by the following gaps
- Dynamic programming based algorithms can be adapted to these gap penalty schemes

Statistical significance of sequence alignments via randomization

- Good alignment scores may also happen by chance, so we need to consider the statistical significance of alignment scores
- If a known probability distribution for the null model is available, we can use that to compute p-values
- If not, randomization can be used here as a tool:
 - 1. Generate a large set R of randomized versions s' of sequence s.
 - 2. Align the sequence t against the randomized sequences s'
 - 3. Compute the distribution of observed alignment scores
 - 4. The fraction of randomized alignment scores M(s',t) that have score greater than or equal to the score M(s,t) gives the P-value

$$P\{score \geq M\} = \frac{|\{s' \in R | M(s',t) \geq M\}|}{|R|}$$

Multiple sequence alignment

- Multiple sequence alignment is a generalization of a pairwise alignment
 - aim to align a group of sequences with a high alignment score
- Useful for finding regions of sequence that were conserved in evolution
 - e.g. functional protein domains

Multiple sequence alignment (MSA)

- Computationally harder than pairwise alignment
 - CPU-time scales exponentially w.r.t. the number of sequences aligned
 - NP-hard: little hope of finding an efficient optimal algorithm
- Heuristic methods such as CLUSTALW, MUSCLE, MAUVE use pairwise alignments as a tool to construct MSA
- A commonly used technique nowadays to align whole genomes is to align all genomes against a single reference genome

BLAST

Sequence retrieval from large databases

- The running time of Needleman-Wunsch and Smith-Waterman algorithms both scale proportionally to the size of the matrix M, which is quadratic in the length of the sequences
- On modern huge sequence databases, this is too much

 Also wasteful, since the majority of sequences are not expected to have significant similarity to the query sequence
- In practice, the goal of finding the optimal alignment need is sacrificed for speed

BLAST (Basic Local Alignment and Search Tool)

- BLAST is the most widely used fast, non-optimal alignment tool
- "blasting" is a synonym for aligning sequences and finding matches from large sequence databases
- Here we assume a setting where we have one *query sequence* and a large database (e.g. Genbank) and we want to find the most similar sequences from the database.

Basic local alignment search tool

<u>SF Altschul</u>, W Gish, <u>W Miller</u>, <u>EW Myers</u>... - Journal of molecular ..., 1990 - Elsevier A new approach to rapid sequence comparison, **basic local alignment search tool** (BLAST), directly approximates alignments that optimize a measure of **local** similarity, the maximal segment pair (MSP) score. Recent matImmatical results on the stochastic properties of ... Cited by 55641 Related articles All 103 versions Cite Save

BLAST working principle

- BLAST relies on finding matching short substrings in the query sequence and a database sequence
- 1. First, all length-k substrings of the query sequence, called the *query* words, are extracted
- 2. By using a substitution matrix (e.g. BLOSUM62), the set of substrings is expanded to a set of high-scoring substrings
 - those that have alignment score with the original substrings higher than a fixed threshold

BLAST working principle

- 3. The high-scoring substrings are searched in a database, and matching sequenced are retrieved
- 4. Each matched substring is extended to right and left until the alignment score starts to decrease. The result is called a Maximal Segment Pair (MSP)
- 5. The resulting MSPs with score above a given threshold are tested for statistical significance
- 6. Several MSPs that hit the same database sequence are combined into an alignment with gaps

BLAST Bitscore and p-value

- BLAST computes several statistics of the aligned sequences
- Bitscore is a normalized version of the alignment score,

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

- K and λ are constants depending on the gap penalties and the substitution matrix used (found by fitting to a Gumbel Extreme Value distribution)
- Bitscore estimates the magnitute of the search space we have to look through before we expect to find just by chance a score as good as or better than the one we have:
 - expected 2^{S'} alignments need to be examined to find a bitscore of S' by chance.
- Expressed as a p-value $P(score \ge S') = 2^{-S'}$

BLAST E-value

- When searching for a best match for the query sequence in a large database, we are preforming a large number of statistical significance tests.
- P-values get inflated due to multiple testing
- E-value is a correction applied to the BLAST p-value:

$$E = nN \cdot P(score \ge S') = nN \cdot 2^{-S'}$$

- n is the length of the query sequence, N is the total length of sequences in the database
- nN is the approximate number of potential alignment locations (ca. n substrings per query sequence, ca. N locations to align to in the database)