
CS-E5865 Computational

genomics
Autumn 2020, Lecture 3: Sequence alignment

Lecturer: Pekka Marttinen

Assistants: Alejandro Ponce de León, Zeinab
Yousefi, Onur Poyraz

Lecture 3, 2020

Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given two sequences x = x1x2...xn, y = y1y2…ym, an

alignment is an assignment of gaps in the 2 sequences

so that we line up each letter in one sequence with either

a letter or a gap in the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

2

Sequence alignment

• The purposes of sequence
alignment

– to measure the similarity of two
sequences

– to reveal which parts of the
sequences match and which
do not

• Commonly used way to
visualize pairwise alignments
on the right:

“|” denote matching pair of
symbols

“-” denotes a gap symbol inserted
in the sequence to improve
alignment

3

Global and local alignment

• Two types of alignment:

• Global alignment aims to

maximize the alignment quality

over the whole sequences

– leaving gaps typically

penalized

• Local alignment tries to match

sub-regions of the sequences

– gaps typically not penalized

4

Global alignment scoring functions

• By inserting gaps in different

places, we get different

alignments

• We wish to find the best one

• We define a scoring function

σ(x,y) for any pair of symbols in

the alignment

• The alignment score is the sum

where i indexes the positions in

the alignment

5

Global alignment scoring functions:

example
• Scoring Function:

Match: +m

Mismatch: -s

Gap: -d

• Score

M = (# matches)  m + (# mismatches)  (-s) + (#gaps)  (-d)

6

Substitution matrices

• We can collect the scores of the

scoring function σ into a matrix

(on the right for our example)

• Matrix S containing the σ values

is called the substitution matrix

• For DNA simple scoring schemas

are typically used

• For amino acids richer

substitution matrices are used

– PAM

– BLOSUM

7

Substitution matrices: Example

• In general, the scores can depend on the pair of symbols

• Consider the following substitution matrix

A G C T -

A 10 -1 -3 -4 -5

G -1 7 -5 -3 -5

C -3 -5 9 0 -5

T -4 -3 0 8 -5

• Then the alignment:
AGACTAGTTAC

CGA - - -GACGT

would have the following score:

S(A,C) + S (G,G) + S(A,A) + 3*(-5) + S(G,G) + S(T,A) + S(T,C) + S(A,G) + S(C,T)

= -3 +7 + 10 -3*5 +7 -4 +0 -1 +0 = 1

8

Optimal global alignment

• The optimal alignment A* between two sequences x and
y is the alignment A(s,t) that maximizes the alignment
score M over all possible alignments.

• There are possible alignments between two
sequences of length n, so brute-force enumeration of all
of them is not feasible

• Can be solved efficiently by using the Needleman-
Wunsch algorithm, which is based on dynamic
programming (we take a closer look in the following)
– Basic idea: solve the problem prefixes of length 1,2,...,n

incrementally making use of the optimal solutions for the
prefixes

9

Dynamic programming to the rescue

• General recipe for solving complex optimization

problems where there is internal subset structure

– e.g. subsequences of a larger sequence

• Iterate the following for k=1,...,n-1

– Solve the smaller subproblems of size k

• e.g. optimal alignments of subsequences of length k

– Extend the optimal solutions for size k problems to optimal

solutions of size k+1 problems

10

Example

• Let us find the optimal global alignment for two

sequences

• Let us assume the simple substitution matrix with score:

➢ +1 for matching a symbol with itself,

➢ -1 for matching symbol with a different symbol or a gap

• The matrix M stores the intermediate alignment scores:

– M(i,j) stores the optimal alignment score of s1...si-1 and t1...tj-1

s = ATTCGT

t = CTTAGCT

11

Example
• First consider aligning the beginning

of the two sequences

• We have three choices

1. match s1 against a gap before t1 :

M(2,1) = (‘A’,’-’) = -1

2. match t1 against a gap before s1 :

M(1,2) = (’-’,’C’) = -1

3. match the first symbols with each

other: M(2,2) = (‘A’,’C’) = -1

• For now, all the

three choices give us

the same score

M(1,2) = M(2,1) = M(2,2) = -1

s = ATTCGT

t = CTTAGCT

s = ATTCGT

|

t = -CTTAGCT

s = -ATTCGT

|

t = CTTAGCT

s = ATTCGT

|

t = CTTAGCT

M - C T T A G C T

- 0 -1

A -1 -1

T

T

C

G

T

Example
• To extend the alignment M(2,1) we have

again three choices

1. match s2 against a gap before t1, score

M(3,1) = M(2,1)+ (‘T’,’-’) = -2,

2. match t1 against a gap before s2 , score

M(2,1)+ (‘-’,’C’) = -2 < M(2,2)

3. match s2 against t1, score:

M(3,2) = M(2,1)+ (‘T’,’C’) = -2

• Notice that the second choice gives an

alignment for s1 and t1 with a score inferior

to what we have already

found and stored in

M(2,2) – we ignore this

choice.

s = ATTCGT

||

t = --CTTAGCT

s = A-TTCGT

||

t = -CTTAGCT

s = ATTCGT

||

t = -CTTAGCT

M - C T T A G C T

- 0 -1

A -1 -1

T -2 -2

T

C

G

T

Example
• To extend the alignment M(1,2) the three

choices are

1. match s1 against a gap before t2, score

M(1,2)+ (‘A’,’-’) = -2 < M(2,2)

2. match t2 against a gap before s1 , score

M(1,3) = M(1,2)+ (‘-’,’T’) = -2

3. match s1 against t2 with, score:

M(2,3) = M(1,2)+ (‘A’,’T’) = -2

• The first choice gives yet another

alignment for s1 and t1 with inferior score to

what we have already

found and stored in

M(2,2) –> no update.

s = -ATTCGT

||

t = C-TTAGCT

s = --ATTCGT

||

t = CTTAGCT

s = -ATTCGT

||

t = CTTAGCT

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2

T

C

G

T

Example
• To extend the alignment M(2,2) the three

choices are

1. match s2 against a gap before t2, score

M(2,2)+ (‘T’,’-’) = -2 = M(3,2)

2. match t2 against a gap before s2 , score

M(2,2)+ (‘-’,’T’) = -2 = M(2,3)

3. match s2 against t2 with, score:

M(3,3) = M(2,2)+ (‘T’,’T’) = 0

• The two first choices give us alignment

scores that match the best scores found so

far – these correspond

to alternative optimal

alignments

s = ATTCGT

||

t = C-TTAGCT

s = A-TTCGT

||

t = CTTAGCT

s = ATTCGT

||

t = CTTAGCT

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2 0

T

C

G

T

Example
• We can continue in the same way:

– consider three possible options to extend an alignment M(i,j) to

M(i+1,j), M(i,j+1) and M(i+1,j+1)

– check if we have found a better alignment before

• Iterating the process we eventually fill in the matrix M

• From the bottom right corner we find the optimal global

alignment score for the two sequences

M - C T T A G C T

- 0 -1 -2 -3 -4 -5 -6 -7

A -1 -1 -2 -3 -2 -3 -4 -5

T -2 -2 0 -1 -2 -3 -4 -3

T -3 -3 -1 1 0 -1 -2 -3

C -4 -2 -2 0 0 -1 0 -1

G -5 -3 -3 -1 -1 1 0 -1

T -6 -4 -2 -2 -2 0 0 1

16

Alternative look
• Alternatively, we could fill in the matrix by considering the 3 different ways

how the optimal alignment M(i,j) can arise via three different paths:

– Extending optimal alignment between x1...xi-2 & y1...yj-2 by aligning xi-1 with yj-1

– Extending optimal alignment between x1...xi-2 & y1...yj-1 by aligning xi-1 with a gap

– Extending optimal alignment between x1...xi-1 & y1...yj-2 by aligning yj-1 with a gap

• Optimal alignment score is then given by
M(i-1,j-1) + s(xi-1, yj-1)

M(i, j) = max M(i-1, j) + s(xi-1, ‘-’)

M(i, j-1) + s(‘-’, yj-1)

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2

T

C

G

T

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2 0

T

C

G

T

Components of dynamic programming

• The dynamic programming approach has 3 essential

components:

1. Recurrence relation: How can we compute M(i,j)

knowing only the values M(i’,j’) with i’≤i and j’≤j?

2. Tabular computation: How to store efficiently the

computed values in order to avoid computing them over

and over again?

3. Traceback: How to find the actual alignment of the 2

sequences after we have computed the similarity values?

18

The recurrence relation

• We need to establish a recursive relationship between the

value M(i,j) with i,j≥1 (i.e., the similarity between x1x2...xi-1, and

y1y2…yj-1) and values of M with index pairs smaller than i,j.

• Base conditions:
a. M(1, 1) = 0

b. M(1, j) = - j  d
c. M(i, 1) = - i  d

where –d is the score of a gap

• The recurrence relation for M(i,j) with i, j > 1 based on the

principle of optimality:
M(i-1,j-1) + s(xi-1, yj-1)

M(i, j) = max M(i-1, j) -d

M(i, j-1) -d

19

Tabular computation

• We fill in the table M(i,j), with 0≤i≤n and 0≤j≤m, in an

increasing order of pairs (i,j).

• First, we initialize first row and column according to the

base cases of the recurrence relation:
a. M(1, 1) = 0

b. M(1, j) = - j  d

c. M(i, 1) = - i  d

20

Tabular computation

• The values of the inner cells M(i,j) (i,j > 0) can be

computed in any order as long as the three values

required by the recurrence relation have been computed:
M(i-1,j-1) + s(xi-1, yj-1) [case 1]

M(i, j) = max M(i-1, j) – d [case 2]

M(i, j-1) – d [case 3]

DIAG, if [case 1]

TB(i,j) = UP, if [case 2]

LEFT, if [case 3]

21

Needleman-Wunsch global alignment

algorithm
Input: x,y = sequences to align and sigma, gapsigma = alignment scores for non-gaps and gaps

Output:

– M = dynamic programming matrix of optimal alignment scores

– TB = matrix storing the traceback path

n = length(x); m = length(y);

Initialization:

M(1,1)=0

for j = 2:m+1 M(1,j) = gapsigma* j; % penalty of gaps preceding s

for i = 2:n+1 M(i,1) = gapsigma* i; % penalty of gaps preceding t

Main iteration: Filling-in partial alignments

For each i = 2……n+1

For each j = 2……m+1

M(i-1,j-1) + s(xi-1, yj-1) [case 1]

M(i, j) = max M(i-1, j) + s(xi-1, ‘-’) [case 2]

M(i, j-1) + s(‘-’, yj-1) [case 3]

DIAG, if [case 1]

TB(i,j) = UP, if [case 2]

LEFT, if [case 3]

22

Traceback: recovering the alignment

• Outputting the alignment corresponding to the optimal score requires

parsing back the path that we took when computing the value for the

cell

M - C T T A G C T

- 0 -1 -2 -3 -4 -5 -6 -7

A -1 -1 -2 -3 -2 -3 -4 -5

T -2 -2 0 -1 -2 -3 -4 -3

T -3 -3 -1 1 0 -1 -2 -3

C -4 -2 -2 0 0 -1 0 -1

G -5 -3 -3 -1 -1 1 0 -1

T -6 -4 -2 -2 -2 0 0 1

s = ATTCGT

|

t = CTTAGCT

s = ATTCG-T

||

t = CTTAGCT

s = ATTCG-T

|||

t = CTTAGCT

s = ATTCG-T

||||

t = CTTAGCT

s = ATTCG-T

|||||

t = CTTAGCT

s = ATTCG-T

||||||

t = CTTAGCT

s = ATTCG-T

|||||||

t = CTTAGCT

23

When does dynamic programming work?

• Key property: optimal solution for the whole problem can

be decomposed into optimal solutions for subproblems

• In our case: optimal alignment of the whole sequence is

composed of

– optimal alignment of prefixes of two strings

– optimal alignment of the last symbols of the strings

• Our score function decomposes

– the symbols outside the subset do not affect the optimality of the

alignment

– this would not be the case if we allowed the

the alignments of the symbols to cross arbitrarily

s = -ATTCGT

|

t = CTTAGCT

24

Local alignment

• A local alignment of two sequences s and t is a global

alignment s(i:j) and t(k:l) for some choice of (i,j) and (k,l)

• The optimal local alignment A is given by the choice

of (i,j) and (k,l) that maximize the alignment score

M(A(s(i:j), t(k:l)))

• Optimal local alignments can be found by a dynamic

programming algorithm called Smith-Waterman that

is only a minor modification of the Needleman-Wunch

global alignment algorithm

25

Smith-Waterman local alignment

• Simple modification to the global alignment

• An additional update condition preventing the score from

getting negative values
M(i-1,j-1) + σ(si-1, tj-1)

M(i, j) = max M(i-1, j) + σ(si-1, ‘-’)

M(i, j-1) + σ(‘-’, tj-1)

0

• Interpretation: if extending the current global alignment

yields a negative score, better score is obtained by

starting a new alignment region

– Ignore badly aligning regions

26

Smith-Waterman local alignment

• The value in M(i,j) denotes the

score of local alignments that

end at the symbols si-1 and tj-1

• The largest values in the matrix

denote the optimal local

alignment end points

• In our example, we have three

possible end points,

corresponding to three different

local alignments

M - C T T A G C T

- 0 0 0 0 0 0 0 0

A 0 0 0 0 1 0 0 0

T 0 0 1 1 0 0 0 1

T 0 0 1 2 1 0 0 1

C 0 1 0 1 1 0 1 0

G 0 0 0 0 0 2 1 0

T 0 0 1 1 0 1 1 2

s = ATTCG-T

|||| |

t = CTTAGCT

s = ATTCGT

||||

t = CTTAGCT

s = ATTCGT

||

t = CTTAGCT

27

Traceback for finding the local alignment

1. Start with the largest value in
the matrix
– corresponds to the last position

in the alignment region

2. Trace back until a zero is
found

3. Here we have multiple
maximum values
– each one corresponds to a

different, equally good local
alignment

– to break ties, picking the longest
one might be a good policy

M - C T T A G C T

- 0 0 0 0 0 0 0 0

A 0 0 0 0 1 0 0 0

T 0 0 1 1 0 0 0 1

T 0 0 1 2 1 0 0 1

C 0 1 0 1 1 0 1 0

G 0 0 0 0 0 2 1 0

T 0 0 1 1 0 1 1 2

28

Smith-Waterman local alignment

algorithm

Input: s,t = sequences to

align and sigma, gapsigma

= alignment scores for

non-gaps and gaps

Output:

– M = dynamic

programming matrix of

optimal alignment

scores

– TB = matrix storing

the traceback path

TB(i,j):

– 1 denotes match

(s(i-1),t(j-1)),

– 2 denotes match

(s(i-1),'-'),

– 3 denotes match

('-',t(j-1)),

n = length(s); m = length(t);

Initialization:

M = zeros(n+1,m+1); % initialize with zeros

TB = zeros(n+1,m+1);

Main iteration:

For each i = 2……n+1

For each j = 2……m+1
M(i-1,j-1) + s(si-1, tj-1) [case 1]

M(i, j) = max M(i-1, j) + s(si-1, ‘-’) [case 2]
M(i, j-1) + s(‘-’, tj-1) [case 3]
0 [case 4]

1, if [case 1]
TB(i,j) = 2, if [case 2]

3, if [case 3]

0 if [case 4]

29

Gap penalty schemes

• So far we have used a simple gap penalty scheme,

where each gap symbol incurs a constant penalty

– We may over-penalize gaps that are several symbols long

• In practice, an affine gap penalty scheme is frequently

used

• Affine gap penalty is composed of

– gap opening penalty: paid by the first gap in a sequence of gaps

– gap extension penalty: paid by the following gaps

• Dynamic programming based algorithms can be

adapted to these gap penalty schemes

30

Statistical significance of sequence

alignments via randomization
• Good alignment scores may also happen by chance, so we

need to consider the statistical significance of alignment scores

• If a known probability distribution for the null model is available,

we can use that to compute p-values

• If not, randomization can be used here as a tool:

1. Generate a large set R of randomized versions s’ of sequence s.

2. Align the sequence t against the randomized sequences s’

3. Compute the distribution of observed alignment scores

4. The fraction of randomized alignment scores M(s’,t) that have

score greater than or equal to the score M(s,t) gives the P-value

31

Multiple sequence alignment

• Multiple sequence alignment is a generalization

of a pairwise alignment

– aim to align a group of sequences with a high

alignment score

• Useful for finding regions of sequence that were

conserved in evolution

– e.g. functional protein domains

32

Multiple sequence alignment (MSA)

• Computationally harder than pairwise

alignment

– CPU-time scales exponentially w.r.t. the

number of sequences aligned

– NP-hard: little hope of finding an

efficient optimal algorithm

• Heuristic methods such as CLUSTALW,

MUSCLE, MAUVE use pairwise

alignments as a tool to construct MSA

• A commonly used technique nowadays

to align whole genomes is to align all

genomes against a single reference

genome

33

BLAST

34

Sequence retrieval from large databases

• The running time of Needleman-Wunsch and Smith-

Waterman algorithms both scale proportionally to the

size of the matrix M, which is quadratic in the length of

the sequences

• On modern huge sequence databases, this is too much

– Also wasteful, since the majority of sequences are not expected

to have significant similarity to the query sequence

• In practice, the goal of finding the optimal alignment

need is sacrificed for speed

35

BLAST (Basic Local Alignment and

Search Tool)
• BLAST is the most widely used fast, non-optimal alignment tool

• “blasting” is a synonym for aligning sequences and finding

matches from large sequence databases

• Here we assume a setting where we have one query sequence

and a large database (e.g. Genbank) and we want to find the

most similar sequences from the database.

36

BLAST working principle

• BLAST relies on finding matching
short substrings in the query
sequence and a database
sequence

1. First, all length-k substrings of the
query sequence, called the query
words, are extracted

2. By using a substitution matrix
(e.g. BLOSUM62), the set of
substrings is expanded to a set of
high-scoring substrings

– those that have alignment score
with the original substrings higher
than a fixed threshold

37

BLAST working principle

3. The high-scoring substrings are
searched in a database, and
matching sequenced are retrieved

4. Each matched substring is extended
to right and left until the alignment
score starts to decrease. The result
is called a Maximal Segment Pair
(MSP)

5. The resulting MSPs with score
above a given threshold are tested
for statistical significance

6. Several MSPs that hit the same
database sequence are combined
into an alignment with gaps

38

BLAST Bitscore and p-value

• BLAST computes several statistics of the aligned sequences

• Bitscore is a normalized version of the alignment score,

• K and λ are constants depending on the gap penalties and the
substitution matrix used (found by fitting to a Gumbel Extreme
Value distribution)

• Bitscore estimates the magnitute of the search space we have to
look through before we expect to find just by chance a score as
good as or better than the one we have:

– expected 2S’ alignments need to be examined to find a bitscore of S’
by chance.

• Expressed as a p-value

39

BLAST E-value

• When searching for a best match for the query sequence in a
large database, we are preforming a large number of
statistical significance tests.

• P-values get inflated due to multiple testing

• E-value is a correction applied to the BLAST p-value:

• n is the length of the query sequence, N is the total length of
sequences in the database

• nN is the approximate number of potential alignment
locations (ca. n substrings per query sequence, ca. N
locations to align to in the database)

40

