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Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given two sequences x = x1x2...xn, y = y1y2…ym, an 

alignment is an assignment of gaps in the 2 sequences 

so that we line up each letter in one sequence with either 

a letter or a gap in the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC
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Sequence alignment

• The purposes of sequence 
alignment

– to measure the similarity of two 
sequences

– to reveal which parts of the 
sequences match and which 
do not

• Commonly used way to 
visualize pairwise alignments 
on the right:

“|” denote matching pair of 
symbols

“-” denotes a gap symbol inserted 
in the sequence to improve 
alignment
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Global and local alignment

• Two types of alignment:

• Global alignment aims to 

maximize the alignment quality 

over the whole sequences

– leaving gaps typically 

penalized

• Local alignment tries to match 

sub-regions of the sequences 

– gaps typically not penalized
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Global alignment scoring functions

• By inserting gaps in different 

places, we get different 

alignments

• We wish to find the best one

• We define a scoring function 

σ(x,y) for any pair of symbols in 

the alignment

• The alignment score is the sum

where i indexes the positions in 

the alignment 
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Global alignment scoring functions: 

example
• Scoring Function:

Match: +m

Mismatch: -s

Gap: -d

• Score

M = (# matches)  m + (# mismatches)  (-s) + (#gaps)  (-d)
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Substitution matrices

• We can collect the scores of the 

scoring function σ into a matrix 

(on the right for our example)

• Matrix S containing the σ values 

is called the substitution matrix

• For DNA simple scoring schemas 

are typically used

• For amino acids richer 

substitution matrices are used

– PAM

– BLOSUM
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Substitution matrices: Example

• In general, the scores can depend on the pair of symbols

• Consider the following substitution matrix 

A G C T -

A 10 -1 -3 -4 -5

G -1 7 -5 -3 -5

C -3 -5 9 0 -5

T -4 -3 0 8 -5

• Then the alignment:
AGACTAGTTAC 

CGA - - -GACGT

would have the following score:

S(A,C) + S (G,G) + S(A,A) + 3*(-5) + S(G,G) + S(T,A) + S(T,C) + S(A,G) + S(C,T)

= -3 +7 + 10 -3*5 +7 -4 +0 -1 +0 = 1
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Optimal global alignment

• The optimal alignment A* between two sequences x and 
y  is the alignment A(s,t) that maximizes the alignment 
score M over all possible alignments.

• There are        possible alignments between two 
sequences of length n, so brute-force enumeration of all 
of them is not feasible

• Can be solved efficiently by using the Needleman-
Wunsch algorithm, which is based on dynamic 
programming (we take a closer look in the following)
– Basic idea: solve the problem prefixes of length 1,2,...,n 

incrementally making use of the optimal solutions for the 
prefixes
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Dynamic programming to the rescue

• General recipe for solving complex optimization 

problems where there is internal subset structure

– e.g. subsequences of a larger sequence

• Iterate the following for k=1,...,n-1

– Solve the smaller subproblems of size k

• e.g. optimal alignments of subsequences of length k

– Extend the optimal solutions for size k problems to optimal 

solutions of size k+1 problems
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Example

• Let us find the optimal global alignment for two 

sequences

• Let us assume the simple substitution matrix with score:

➢ +1 for matching a symbol with itself, 

➢ -1 for matching symbol with a different symbol or a gap

• The matrix M stores the intermediate alignment scores:

– M(i,j) stores the optimal alignment score of s1...si-1 and t1...tj-1

s = ATTCGT

t = CTTAGCT
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Example
• First consider aligning the beginning 

of the two sequences

• We have three choices

1. match s1 against a gap before t1 :

M(2,1) = (‘A’,’-’) = -1 

2. match t1 against a gap before s1       :

M(1,2) = (’-’,’C’) = -1  

3. match the first symbols with each 

other:  M(2,2) = (‘A’,’C’) = -1 

• For now, all the 

three choices give us 

the same score

M(1,2) = M(2,1) = M(2,2) = -1

s = ATTCGT

t = CTTAGCT

s = ATTCGT

|

t = -CTTAGCT

s = -ATTCGT

|

t = CTTAGCT

s = ATTCGT

|

t = CTTAGCT

M - C T T A G C T

- 0 -1

A -1 -1

T

T

C

G

T



Example
• To extend the alignment M(2,1) we have 

again three choices

1. match s2 against a gap before t1, score 

M(3,1) = M(2,1)+ (‘T’,’-’) = -2, 

2. match t1 against a gap before s2 , score

M(2,1)+ (‘-’,’C’) = -2 < M(2,2)

3. match s2 against  t1, score: 

M(3,2) = M(2,1)+ (‘T’,’C’) = -2

• Notice that the second choice gives an

alignment for s1 and t1 with a score inferior 

to what we have already 

found and stored in 

M(2,2) – we ignore this 

choice.

s = ATTCGT

||

t = --CTTAGCT

s = A-TTCGT

||

t = -CTTAGCT

s = ATTCGT

||

t = -CTTAGCT

M - C T T A G C T

- 0 -1

A -1 -1

T -2 -2

T

C

G

T



Example
• To extend the alignment M(1,2) the three 

choices are

1. match s1 against a gap before t2, score 

M(1,2)+ (‘A’,’-’) = -2 < M(2,2)

2. match t2 against a gap before s1 , score

M(1,3) = M(1,2)+ (‘-’,’T’) = -2 

3. match s1 against  t2 with, score: 

M(2,3) = M(1,2)+ (‘A’,’T’) = -2

• The first choice gives yet another 

alignment for s1 and t1 with inferior score to 

what we have already 

found and stored in 

M(2,2) –> no update.

s = -ATTCGT

||

t = C-TTAGCT

s = --ATTCGT

||

t = CTTAGCT

s = -ATTCGT

||

t = CTTAGCT

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2

T

C

G

T



Example
• To extend the alignment M(2,2) the three 

choices are

1. match s2 against a gap before t2, score 

M(2,2)+ (‘T’,’-’) = -2 = M(3,2)

2. match t2 against a gap before s2 , score

M(2,2)+ (‘-’,’T’) = -2 = M(2,3) 

3. match s2 against  t2 with, score: 

M(3,3) = M(2,2)+ (‘T’,’T’) = 0

• The two first choices give us alignment 

scores that match the best scores found so 

far – these correspond 

to alternative optimal 

alignments

s = ATTCGT

||

t = C-TTAGCT

s = A-TTCGT

||

t = CTTAGCT

s = ATTCGT

||

t = CTTAGCT

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2 0

T

C

G

T



Example
• We can continue in the same way:

– consider three possible options to extend an alignment M(i,j) to 

M(i+1,j), M(i,j+1) and M(i+1,j+1)

– check if we have found a better alignment before

• Iterating the process we eventually fill in the matrix M

• From the bottom right corner we find the optimal global 

alignment score for the two sequences 

M - C T T A G C T

- 0 -1 -2 -3 -4 -5 -6 -7

A -1 -1 -2 -3 -2 -3 -4 -5

T -2 -2 0 -1 -2 -3 -4 -3

T -3 -3 -1 1 0 -1 -2 -3

C -4 -2 -2 0 0 -1 0 -1

G -5 -3 -3 -1 -1 1 0 -1

T -6 -4 -2 -2 -2 0 0 1
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Alternative look
• Alternatively, we could fill in the matrix by considering the 3 different ways 

how the optimal alignment M(i,j) can arise via three different paths: 

– Extending optimal alignment between x1...xi-2 & y1...yj-2 by aligning xi-1 with yj-1 

– Extending optimal alignment between x1...xi-2 & y1...yj-1 by aligning xi-1 with a gap

– Extending optimal alignment between x1...xi-1 & y1...yj-2 by aligning yj-1 with a gap

• Optimal alignment score is then given by
M(i-1,j-1) + s(xi-1, yj-1)     

M(i, j)  =   max M(i-1, j) + s(xi-1, ‘-’) 

M(i, j-1) + s(‘-’, yj-1) 

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2

T

C

G

T

M - C T T A G C T

- 0 -1 -2

A -1 -1 -2

T -2 -2 0

T

C

G

T



Components of dynamic programming

• The dynamic programming approach has 3 essential 

components:

1. Recurrence relation: How can we compute M(i,j) 

knowing only the values M(i’,j’) with i’≤i and j’≤j?

2. Tabular computation: How to store efficiently the 

computed values in order to avoid computing them over 

and over again?

3. Traceback: How to find the actual alignment of the 2 

sequences after we have computed the similarity values?
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The recurrence relation

• We need to establish a recursive relationship between the 

value M(i,j) with i,j≥1 (i.e., the similarity between x1x2...xi-1, and 

y1y2…yj-1) and values of M with index pairs smaller than i,j.

• Base conditions:
a. M(1, 1)  =  0

b. M(1, j) = - j  d
c. M(i, 1) = - i  d

where –d is the score of a gap

• The recurrence relation for M(i,j) with i, j > 1 based on the 

principle of optimality:
M(i-1,j-1) + s(xi-1, yj-1) 

M(i, j)  =   max M(i-1, j) -d

M(i, j-1) -d 
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Tabular computation

• We fill in the table M(i,j), with 0≤i≤n and 0≤j≤m, in an 

increasing order of pairs (i,j).

• First, we initialize first row and column according to the 

base cases of the recurrence relation:
a. M(1, 1)  =  0

b. M(1, j) = - j  d

c. M(i, 1) = - i  d
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Tabular computation

• The values of the inner cells M(i,j) (i,j > 0) can be 

computed in any order as long as the three values 

required by the recurrence relation have been computed:
M(i-1,j-1) + s(xi-1, yj-1)     [case 1]

M(i, j)  =   max M(i-1, j) – d [case 2]

M(i, j-1) – d [case 3]

DIAG,   if  [case 1]

TB(i,j) =      UP, if  [case 2]

LEFT, if  [case 3]
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Needleman-Wunsch global alignment 

algorithm
Input: x,y = sequences to align and sigma, gapsigma = alignment scores for non-gaps and gaps

Output:

– M = dynamic programming matrix of optimal alignment scores

– TB = matrix storing the traceback path

n = length(x); m = length(y);

Initialization:

M(1,1)=0

for j = 2:m+1   M(1,j) = gapsigma* j; % penalty of gaps preceding s

for i = 2:n+1   M(i,1) = gapsigma* i;  % penalty of gaps preceding t

Main iteration: Filling-in partial alignments

For each i = 2……n+1

For each j = 2……m+1

M(i-1,j-1) + s(xi-1, yj-1)     [case 1]

M(i, j) =   max M(i-1, j) + s(xi-1, ‘-’) [case 2]

M(i, j-1) + s(‘-’, yj-1) [case 3]

DIAG,   if  [case 1]

TB(i,j) =     UP, if  [case 2]

LEFT, if [case 3]
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Traceback: recovering the alignment

• Outputting the alignment corresponding to the optimal score requires 

parsing back the path that we took when computing the value for the 

cell

M - C T T A G C T

- 0 -1 -2 -3 -4 -5 -6 -7

A -1 -1 -2 -3 -2 -3 -4 -5

T -2 -2 0 -1 -2 -3 -4 -3

T -3 -3 -1 1 0 -1 -2 -3

C -4 -2 -2 0 0 -1 0 -1

G -5 -3 -3 -1 -1 1 0 -1

T -6 -4 -2 -2 -2 0 0 1

s =  ATTCGT

|

t = CTTAGCT

s = ATTCG-T

||

t = CTTAGCT

s = ATTCG-T

|||

t = CTTAGCT

s = ATTCG-T

||||

t = CTTAGCT

s = ATTCG-T

|||||

t = CTTAGCT

s = ATTCG-T

||||||

t = CTTAGCT

s = ATTCG-T

|||||||

t = CTTAGCT
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When does dynamic programming work?

• Key property: optimal solution for the whole problem can 

be decomposed into optimal solutions for subproblems

• In our case: optimal alignment of the whole sequence is 

composed of 

– optimal alignment of prefixes of two strings

– optimal alignment of the last symbols of the strings

• Our score function decomposes

– the symbols outside the subset do not affect the optimality of the 

alignment

– this would not be the case if we allowed the  

the alignments of the symbols to cross arbitrarily

s = -ATTCGT

|

t = CTTAGCT
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Local alignment

• A local alignment of two sequences s and t is a global 

alignment s(i:j) and t(k:l) for some choice of (i,j) and (k,l)

• The optimal local alignment A is given by the choice 

of (i,j) and (k,l) that maximize the alignment score 

M(A(s(i:j), t(k:l) ))

• Optimal local alignments can be found by a dynamic 

programming algorithm called Smith-Waterman that 

is only a minor modification of the Needleman-Wunch

global alignment algorithm
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Smith-Waterman local alignment

• Simple modification to the global alignment

• An additional update condition preventing the score from 

getting negative values
M(i-1,j-1) + σ(si-1, tj-1)     

M(i, j)  =   max M(i-1, j) + σ(si-1, ‘-’) 

M(i, j-1) + σ(‘-’, tj-1) 

0

• Interpretation: if extending the current global alignment 

yields a negative score, better score is obtained by 

starting a new alignment region

– Ignore badly aligning regions
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Smith-Waterman local alignment

• The value in M(i,j) denotes the 

score of local alignments that 

end at the symbols si-1 and tj-1

• The largest values in the matrix 

denote the optimal local 

alignment end points

• In our example, we have three 

possible end points, 

corresponding to three different 

local alignments

M - C T T A G C T

- 0 0 0 0 0 0 0 0

A 0 0 0 0 1 0 0 0

T 0 0 1 1 0 0 0 1

T 0 0 1 2 1 0 0 1

C 0 1 0 1 1 0 1 0

G 0 0 0 0 0 2 1 0

T 0 0 1 1 0 1 1 2

s = ATTCG-T

|||| |

t = CTTAGCT

s = ATTCGT

|||| 

t = CTTAGCT

s = ATTCGT

|| 

t = CTTAGCT
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Traceback for finding the local alignment

1. Start with the largest value in 
the matrix
– corresponds to the last position 

in the alignment region

2. Trace back until a zero is 
found

3. Here we have multiple 
maximum values
– each one corresponds to a 

different, equally good local 
alignment

– to break ties, picking the longest 
one might be a good policy

M - C T T A G C T

- 0 0 0 0 0 0 0 0

A 0 0 0 0 1 0 0 0

T 0 0 1 1 0 0 0 1

T 0 0 1 2 1 0 0 1

C 0 1 0 1 1 0 1 0

G 0 0 0 0 0 2 1 0

T 0 0 1 1 0 1 1 2
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Smith-Waterman local alignment 

algorithm

Input: s,t = sequences to 

align and sigma, gapsigma

= alignment scores for 

non-gaps and gaps

Output:

– M = dynamic 

programming matrix of 

optimal alignment 

scores

– TB = matrix storing 

the traceback path

TB(i,j): 

– 1 denotes match

(s(i-1),t(j-1)), 

– 2 denotes match

(s(i-1),'-'), 

– 3 denotes match

('-',t(j-1)),

n = length(s); m = length(t);

Initialization:

M = zeros(n+1,m+1); % initialize with zeros

TB = zeros(n+1,m+1); 

Main iteration: 

For each i = 2……n+1

For each j = 2……m+1
M(i-1,j-1) + s(si-1, tj-1)       [case 1]

M(i, j)  =   max M(i-1, j) + s(si-1, ‘-’) [case 2]
M(i, j-1) + s(‘-’, tj-1) [case 3]
0 [case 4]

1,   if  [case 1]
TB(i,j) =     2, if  [case 2]

3, if [case 3]

0 if [case 4]
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Gap penalty schemes

• So far we have used a simple gap penalty scheme, 

where each gap symbol incurs a constant penalty

– We may over-penalize gaps that are several symbols long

• In practice, an affine gap penalty scheme is frequently 

used

• Affine gap penalty is composed of 

– gap opening penalty: paid by the first gap in a sequence of gaps

– gap extension penalty: paid by the following gaps

• Dynamic programming based algorithms can be 

adapted to these gap penalty schemes
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Statistical significance of sequence 

alignments via randomization
• Good alignment scores may also happen by chance, so we 

need to consider the statistical significance of alignment scores

• If a known probability distribution for the null model is available, 

we can use that to compute p-values

• If not, randomization can be used here as a tool:

1. Generate a large set R of randomized versions s’ of sequence s.

2. Align the sequence t against the randomized sequences s’

3. Compute the distribution of observed alignment scores

4. The fraction of randomized alignment scores M(s’,t) that have  

score greater than or equal to the score M(s,t) gives the P-value
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Multiple sequence alignment

• Multiple sequence alignment is a generalization 

of a pairwise alignment

– aim to align a group of sequences with a high 

alignment score

• Useful for finding regions of sequence that were 

conserved in evolution

– e.g. functional protein domains
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Multiple sequence alignment (MSA)

• Computationally harder than pairwise 

alignment

– CPU-time scales exponentially w.r.t. the  

number of sequences aligned

– NP-hard:  little hope of finding an 

efficient optimal algorithm

• Heuristic methods such as CLUSTALW, 

MUSCLE, MAUVE use pairwise 

alignments as a tool to construct MSA

• A commonly used technique nowadays 

to align whole genomes is to align all 

genomes against a single reference 

genome
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BLAST

34



Sequence retrieval from large databases

• The running time of Needleman-Wunsch and Smith-

Waterman algorithms both scale proportionally to the 

size of the matrix M, which is quadratic in the length of 

the sequences

• On modern huge sequence databases, this is too much

– Also wasteful, since the majority of sequences are not expected 

to have significant similarity to the query sequence 

• In practice, the goal of finding the optimal alignment 

need is sacrificed for speed
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BLAST (Basic Local Alignment and 

Search Tool)
• BLAST is the most widely used fast, non-optimal alignment tool

• “blasting” is a synonym for aligning sequences and finding 

matches from large sequence databases

• Here we assume a setting where we have one query sequence 

and a large database (e.g. Genbank) and we want to find the 

most similar sequences from the database.
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BLAST working principle

• BLAST relies on finding matching 
short substrings in the query 
sequence and a database 
sequence

1. First, all length-k substrings of the 
query sequence, called the query 
words,  are extracted

2. By using a substitution matrix 
(e.g. BLOSUM62), the set of 
substrings is expanded to a set of 
high-scoring substrings

– those that have alignment score 
with the original substrings higher 
than a fixed threshold
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BLAST working principle

3. The high-scoring substrings are 
searched in a database, and 
matching sequenced are retrieved

4. Each matched substring is extended 
to right and left until the alignment 
score starts to decrease. The result 
is called a Maximal Segment Pair 
(MSP) 

5. The resulting MSPs with score 
above a given threshold are tested 
for statistical significance

6. Several MSPs that hit the same 
database sequence are combined 
into an alignment with gaps
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BLAST Bitscore and p-value

• BLAST computes several statistics of the aligned sequences

• Bitscore is a normalized version of the alignment score, 

• K and λ are constants depending on the gap penalties and the 
substitution matrix used (found by fitting to a Gumbel Extreme 
Value distribution)

• Bitscore estimates the magnitute of the search space we have to 
look through before we expect to find just by chance a score as 
good as or better than the one we have: 

– expected 2S’ alignments need to be examined to find a bitscore of S’ 
by chance. 

• Expressed as a p-value
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BLAST E-value

• When searching for a best match for the query sequence in a 
large database, we are preforming a large number of
statistical significance tests.

• P-values get inflated due to multiple testing

• E-value is a correction applied to the BLAST p-value:

• n is the length of the query sequence, N is the total length of 
sequences in the database

• nN is the approximate number of potential alignment 
locations (ca. n substrings per query sequence, ca. N 
locations to align to in the database)
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