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Our toolbox so far

1. Multinomial i.i.d model for sequences

2. Markov Models for modeling local dependencies:

3. Dynamic programming for fast computation over 

sequences

4. Randomization for assessing statistical significance
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Hidden Markov Models

• Hidden Markov Models (HMM) are the probabilistic 

model of choice for biological sequence analysis (both 

DNA and proteins) 

• HMM combine multinomial and Markov sequence 

models and uses dynamic programming for computation
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https://en.wikipedia.org/wiki/Hidden_Markov_model



Hidden Markov Models

• A Hidden Markov Model (HMM) is composed of
– Set of (hidden) states, capable of emitting symbols according to 

a probability distribution (in the base case: multinomial i.i.d)

– Set of transitions between the states, with transition 
probabilities (a Markov chain)

• Two kinds of sequences:
– State sequence (hidden)  = (1 ,…, n) called the path

– Symbol sequence (observed):  s = (s1 ,…., sn)
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s1 s2 s3 s4 sn

1 2 3 4 n



Applications of Hidden Markov Models

• Segmentation of biological sequences into potentially 

meaningful regions with precise boundaries

• Multiple alignment of biological sequences (profile 

HMMs)

– Multiple sequence alignment can be efficiently solved by taking 

the one-versus-all approach

– Profile HMM can be interpreted as a model for the family of 

sequences
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Applications of Hidden Markov Models

• Functional annotation can be achieved by matching a 

sequence against a HMM trained to recognize particular 

functional motifs.

• Gene finding state-of-the-art methods are based on 

HMMs

– Previous models (e.g., start codon + non-stop codons + stop 

codon) are not suited for eukaryotic genes or pseudogenes
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Applications of Hidden Markov models

• Detection of recombination between bacterial species

(research at Aalto)

Marttinen et al. (2017),

https://doi.org/10.1101/059642

Chewapreecha et al. (2014),

Nature Genetics



Hidden Markov Models
• Basic idea: a sequence is indirectly generated by a Markov 

chain

– The Markov chain has some hidden (unknown) state for each 

position in the sequence

– We observe the character generated at each position according to a 

multinomial distribution that depends on the state

• The sequence is generated by two random processes:

1) generate the hidden Markov chain

2) generate the symbol in each state of the chain using a multinomial 

model
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s1 s2 s3 s4 sn

1 2 3 4 n



Hidden Markov Models
• Transition probability: the probability of switching between hidden states 

in the Markov chain

– Tkl = P(i = l | i-1 = k )  for i=2,...,n 

– T0k= P(1 = k)

• Emission probability: the probability of emitting a certain symbol in a 
given state k
– Ek(b) = P(si = b | i = k )

– conditional on current state, si is independent of the previous symbol si-1

• The joint probability of s=(s1, s2, …, sn) and =(1, 2, …, n) is:
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s1 s2 s3 s4 sn

1 2 3 4 n



Simple running example: occasionally 
dishonest casino

• Casino uses a fair dice most of 
the time, but switches to the 
loaded dice once in a while

• Can we detect which dice is in 
use at any given time, just by 
observing the sequence of 
rolls?
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Sequential view
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Loaded

Fair

1 4 3 6 6 4

Observed sequence of dice rolls:

FL L LFF

Hidden path: the sequence of which dice being used:



Viterbi algorithm – finding the most 

probable state sequence
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Decoding: finding the most probable path

• Decoding: Finding the most 

probable state sequence 

(path *) that could have 

generated the observed rolls

• The number of possible 

paths grows exponentially, so 

we need efficient algorithms
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Viterbi algorithm
• Dynamic programming, based on tabulating

– probability Vk(i) of the most probable hidden path (π1, …, πi) ending in state 

πi=k associated with the prefix s1,…,si

– pointers for traceback

– Formally:

• Table V of size m×n
– m=number of hidden states

– n=length of the observed sequence

– V(k,i)=Vk(i)
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Viterbi algorithm

• Updating the table: the information in each column is sufficient for 

computing the next column:

– for prefix (s1, …, si) find a state k that maximizes the combined probability of

• the best path to k, (π1, …, k): probability Vk(i)

• making a transition from k to l: probability Tkl

• emission probability for base si+1 in state l

• In the end, we get

• Traceback recovers the best path
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Viterbi at the casino

• Vloaded(5) is the maximum 

of two probabilities: the 

most probable sequences 

such that either

– 4’th throw used a loaded 

dice and it is continued to be 

used for 5th throw, or

– The dice was switched from 

fair to loaded after 4th throw

• Simple recurrence gives 

the result:
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Implementation detail: avoiding 

numerical underflow

• Multiplying small probabilities may easily cause 

numerical underflow

• In computer implementation, it is better to use log-

probabilities instead

• The updates remain similar

– multiplication changed to summation

– log maxk xk = maxk log xk, for non-negative xk

• Reusing the notation for V, E, and T for the logarithmic 

quantities
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Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl )



Viterbi in R
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Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl )



Viterbi at the Casino

19

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl )



Viterbi at the Casino
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Vfair(1) = Efair(3) + log2(1/2) = −2.585 − 1 = −3.585

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl )

Vloaded(1) = Eloaded(3) + log2(1/2) = −3.3219 − 1 = −4.3219



Viterbi at the Casino
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Vloaded(4) = Eloaded(1) + max ൝
Vfair 3 + Tfair,loaded

Vloaded 3 + Tloaded,loaded

= −3.3219 + 𝑚𝑎𝑥 ቄ
−8.9029 − 4.3219
−11.2698 − 0.152

= −14.7437

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl )



Viterbi at the casino
• Viterbi estimates remarkably well the correct dice
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Parameter estimation for HMMs
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Parameter estimation for HMMs

• So far we have assumed that we 

have knowledge of the transition 

probabilities and emission 

probabilities

• How to obtain these values if we 

only know

– the emitted sequence and HMM 

structure (here: Fair, Loaded)?

– possibly the hidden state sequence
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Parameter estimation when the state 
sequence is known

• Assume we have 

– a set of training sequences s(1),…, s(m) where s(i) = (s1
(i),…,sn(i)

(i)), e.g.

• Sequences of rolls of dice:  s(1) = (1,3,4,3,…), s(2) = (5,6,4,3,…)

• Nucleotide sequences s(1) = AGTCGT… s(2) = CTGTAT…,

– the set of states and corresponding state sequences of HMM

• Which dice is being used:  y(1) = FFFF…, y(2) = LLFF…

• ORF/ non-ORF: y(1) = NNNYYY…, y(2) = NNNNNN

• The goal is to optimize HMM parameters

– Transition probabilities Tkl

– Emission probabilities Ek(si)
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Parameter estimation when the state 
sequence is known
• Transition probabilities

– we examine the given state sequences y(1),…,y(m)

– denote by tkl the number of times transition k➔l was taken among 
the sequences

– Our estimate for the transition probability is

• Emission probabilities
– we examine the emitted sequences s(1), …, s(m) and the state 

sequences y(1), …, y(m) together

– denote by ek(b) the number of times b was emitted while in state k

– The estimate for emission probability is 
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Pseudo-counts (tkl+1, ek(b)+1) 

• Pseudo-counts are typically used to make the models 
less prone to over-fitting due to insufficient data

• In HMMs, the pseudo-counts also correct a problem 
arising if some state k is not visited in the training data:

• need to allocate some probability to so far unseen events

• In general, the pseudo-counts can be any positive real 
numbers, however 

• too large numbers will override the training data

• too small numbers will cause the parameters to over-fit the training 
data (leads to poorer performance on new, yet unseen data)
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Parameter estimation when the state 
sequence is unknown

• Depending on the application, sometimes we may assume 
we know the state sequence 
– In many cases we have a training set that contains the states e.g. 

known coding regions in genes, known CG rich regions, …

• In other applications, such an assumption is not valid
– which dice is used by the dishonest casino

– data from newly sequenced organisms where no annotation has 
been done.
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Parameter estimation when the state 
sequence is not known

• Assume we have 

– a set of training sequences s(1), …, s(m) , and the 

– set of states of the HMM

• The goal is to optimize HMM parameters 

– Transition probabilities Tkl

– Emission probabilities Ek(si)

• Idea: choose the HMMs parameters so that the likelihood of 

the training data is maximized

• In the following, we present a training algorithm that uses as 

a subroutine the Viterbi algorithm to find the most probable 

path
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Viterbi training

1. Initialize the HMM parameters in some way, e.g. setting 

i. Ek(s) = 1/|Σ| uniformly, where Σ is the alphabet of symbols to emit

ii. Tkl = 1/N(k) uniformly, where N(k) is the number states that can 

follow state k

• Alternatively, one can use a “best guess” 

– e.g. in the genome segmentation example, compute transition 

probabilities from dinucleotide frequencies
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Viterbi training

2. Iterate the following, until parameters do not change:
i. For each sequence s(i), using Viterbi algorithm, find the most 

probable state sequence π*(i), given the current HMM 
parameters θ=(T,E)

ii. Count how many times each transition k➔l was taken in the 
optimal paths  π*(1),…π*(m), and denote that number by tkl

iii. Set the new transition probabilities as

iv. Count how many times each symbol b was emitted in each state 
k, and denote that number by ek(b)

v. Set the new emission probabilities as
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Viterbi training

• The above algorithm works in batch mode: it assumes all 
training data is already available

• The training can also work in online mode, where the 
model is re-estimated when new data arrives

• Also, the training can work just as well on a single long 
sequence as on a set of short sequences

• The casino example highlights this training mode
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Viterbi training at the casino

• Let us enter the occasionally dishonest casino, with our 
HMM, with initial guesses about the underlying model:

• We observe a sequence of rolls: 3,4,6,4,6,6,2,6,3,4,1,5,3  
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T Fair Loaded

Fair .90 .10

Loaded .10 .90

E 1 2 3 4 5 6

Fair .167 .167 .167 .167 .167 .167

Loaded .10 .10 .10 .10 .10 .50



Viterbi training at the casino

• We observe a sequence of rolls: 

3,4,6,4,6,6,2,6,3,4,1,5,3  

• With Viterbi estimation with the current model, we get: 

LLLLLLLLFFFFF

• Count transitions t and emissions e, add pseudo-counts 
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t+1 Fair Loaded

Fair 4+1 0+1

Loaded 1+1 7+1

e+1 1 2 3 4 5 6

Fair 1+1 0+1 2+1 1+1 1+1 0+1

Loaded 0+1 1+1 1+1 2+1 0+1 4+1



Viterbi training at the casino

• Normalize to obtain estimated transition and emission 

probabilities 

• We observe some more rolls: 5,3,4,2,1, 6,1,6,6,2,6,5
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t+1 Fair Loaded

Fair 4+1 0+1

Loaded 1+1 7+1

e+1 1 2 3 4 5 6

Fair 1+1 0+1 2+1 1+1 1+1 0+1

Loaded 0+1 1+1 1+1 2+1 0+1 4+1

T Fair Loaded

Fair .83 .17

Loaded .2 .8

E 1 2 3 4 5 6

Fair .18 .09 .27 .18 .18 .09

Loaded .07 .14 .14 .21 .07 .36



Viterbi training at the casino

• All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 

6,1,6,6,2,6,5

• Viterbi estimation with the new model gives: 

LLLLLLLLFFFFFFFFFFLLLLLLL

• Count transitions and emissions in all rolls seen so far, 

add pseudo-counts
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t+1 Fair Loaded

Fair 9+1 1+1

Loaded 1+1 13+1

e+1 1 2 3 4 5 6

Fair 2+1 1+1 3+1 2+1 2+1 0+1

Loaded 1+1 2+1 1+1 2+1 1+1 8+1



Viterbi training at the casino

• Normalize to obtain estimated transition and emission 
probabilities

• Casino closes, so we do not get more rolls, but we can 
continue training with the current data
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T Fair Loaded

Fair .83 .17

Loaded .125 .875

E 1 2 3 4 5 6

Fair .187 .125 .25 .187 .187 .063

Loaded .095 .14 .095 .14 .095 .43

t+1 Fair Loaded

Fair 9+1 1+1

Loaded 1+1 13+1

e+1 1 2 3 4 5 6

Fair 2+1 1+1 3+1 2+1 2+1 0+1

Loaded 1+1 2+1 1+1 2+1 1+1 8+1



Viterbi training at the casino

• All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 
6,1,6,6,2,6,5

• Viterbi estimation with the new model gives: 
LLLLLLLLFFFFFFFFFFLLLLLLL

• This turns out to be the same predicted sequence as in 
previous step, so our model stays the same

• In general, with a longer sequence, more iterations could be 
needed for convergence
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T Fair Loaded

Fair .83 .17

Loaded .125 .875

E 1 2 3 4 5 6

Fair .187 .125 .25 .187 .187 .063

Loaded .095 .14 .095 .14 .095 .43



Viterbi training: convergence

• If no more data arises Viterbi training algorithm will 
eventually converge (and stop)
– Each update of the parameters increases the probability of the 

most probable paths, 

• so the algorithm will never revisit a previous solution

– There is only finite (but large) number of Viterbi paths to 
consider, 

• so we will eventually run out of solutions that we have not 
considered
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Note: Accuracy of estimation depends on the 
amount of training data

True 1 2 3 4 5 6

Fair .17 .17 .17 .17 .17 .17

Loaded .10 .10 .10 .10 .10 .50

True Model Fair Loaded

Fair .95 .05

Loaded .10 .90

300 

rolls

1 2 3 4 5 6

Fair .19 .19 .23 .08 .23 .08

Loaded .07 .10 .10 .17 .05 .52

30000 

rolls

1 2 3 4 5 6

Fair .17 .17 .17 .17 .17 .17

Loaded .10 .11 .10 .11 .10 .48

300 rolls Fair Loaded

Fair .73 .27

Loaded .29 .71

30000 

rolls

Fair Loaded

Fair .93 .07

Loaded .12 .88

40


