

CS-E5865 Computational genomics

Autumn 2020, Lecture 4: Hidden Markov Models Lecturer: Pekka Marttinen Assistants: Alejandro Ponce de León, Zeinab Yousefi, Onur Poyraz

Lecture 4, 2020

Our toolbox so far

1. Multinomial i.i.d model for sequences

$$P(s) = \prod_{i=1}^{n} p(\mathbf{s}(i)) = \prod_{x \in \mathcal{N}} p_x^{n(x,s)}$$

- 2. Markov Models for modeling local dependencies: $P(s) = P(s_1) \prod_{i=2}^{n} P(s_i | s_{i-1})$
- 3. Dynamic programming for fast computation over sequences
- 4. Randomization for assessing statistical significance

Hidden Markov Models

- Hidden Markov Models (HMM) are the probabilistic model of choice for biological sequence analysis (both DNA and proteins)
- HMM combine multinomial and Markov sequence models and uses dynamic programming for computation

https://en.wikipedia.org/wiki/Hidden_Markov_model

Hidden Markov Models

- A Hidden Markov Model (HMM) is composed of
 - Set of (hidden) states, capable of *emitting* symbols according to a probability distribution (in the base case: *multinomial i.i.d*)
 - Set of transitions between the states, with transition probabilities (*a Markov chain*)
- Two kinds of sequences:
 - State sequence (hidden) $\pi = (\pi_1, ..., \pi_n)$ called the *path*
 - Symbol sequence (observed): $s = (s_1, ..., s_n)$

Applications of Hidden Markov Models

- Segmentation of biological sequences into potentially meaningful regions with precise boundaries
- Multiple alignment of biological sequences (profile HMMs)
 - Multiple sequence alignment can be efficiently solved by taking the one-versus-all approach
 - Profile HMM can be interpreted as a model for the family of sequences

Applications of Hidden Markov Models

- Functional annotation can be achieved by matching a sequence against a HMM trained to recognize particular functional motifs.
- Gene finding state-of-the-art methods are based on HMMs
 - Previous models (e.g., start codon + non-stop codons + stop codon) are not suited for eukaryotic genes or pseudogenes

Applications of Hidden Markov models

 Detection of recombination between bacterial species (research at Aalto)

Marttinen et al. (2017), https://doi.org/10.1101/059642

Chewapreecha et al. (2014), Nature Genetics

Hidden Markov Models

- Basic idea: a sequence is indirectly generated by a Markov chain
 - The Markov chain has some hidden (unknown) state for each position in the sequence
 - We observe the character generated at each position according to a multinomial distribution that depends on the state
- The sequence is generated by two random processes:
 - 1) generate the hidden Markov chain
 - 2) generate the symbol in each state of the chain using a multinomial model

Hidden Markov Models

• Transition probability: the probability of switching between hidden states in the Markov chain

-
$$T_{kl} = P(\pi_i = l \mid \pi_{i-1} = k)$$
 for i=2,...,n

$$- T_{0k} = P(\pi_1 = k)$$

• Emission probability: the probability of emitting a certain symbol in a given state *k*

-
$$E_k(b) = P(s_i = b | \pi_i = k)$$

- conditional on current state, s_i is independent of the previous symbol s_{i-1}
- The joint probability of $s=(s_1, s_2, ..., s_n)$ and $\pi=(\pi_1, \pi_2, ..., \pi_n)$ is:

$$P(s,\pi) = T_{0,\pi_1} E_{\pi_1}(s_1) \prod_{i=1}^{n-1} T_{\pi_i,\pi_{i+1}} E_{\pi_{i+1}}(s_{i+1})$$

Simple running example: occasionally dishonest casino

- Casino uses a fair dice most of the time, but switches to the loaded dice once in a while
- Can we detect which dice is in use at any given time, just by observing the sequence of rolls?

Sequential view

Observed sequence of dice rolls:

Hidden path: the sequence of which dice being used:

Viterbi algorithm – finding the most probable state sequence

Decoding: finding the most probable path

- Decoding: Finding the most probable state sequence (path π*) that could have generated the observed rolls For
- The number of possible paths grows exponentially, so we need efficient algorithms

Hidden path: the sequence of which die being used:

$$\pi^* = \arg\max_{\pi \in \Pi} P(s,\pi)$$

$$P(s,\pi) = T_{0,\pi_1} E_{\pi_1}(s_1) \prod_{i=1}^{n-1} T_{\pi_i,\pi_{i+1}} E_{\pi_{i+1}}(s_{i+1})$$

Viterbi algorithm

- Dynamic programming, based on tabulating
 - probability $V_k(i)$ of the most probable hidden path $(\pi_1, ..., \pi_i)$ ending in state π_i =k associated with the prefix $s_1,...,s_i$
 - pointers for traceback
 - Formally:

$$V_k(i) = \max_{\pi_1, \dots, \pi_{i-1}} p(\pi_1, \dots, \pi_{i-1}, \pi_i = k, s_1, \dots, s_i)$$

- Table V of size $m \times n$
 - m=number of hidden states
 - n=length of the observed sequence
 - $V(k,i)=V_k(i)$

Viterbi algorithm

 Updating the table: the information in each column is sufficient for computing the next column:

$$V_l(i+1) = E_l(s_{i+1}) \max_k V_k(i) T_{kl}$$

- for prefix $(s_1, ..., s_i)$ find a state k that maximizes the combined probability of
 - the best path to k, $(\pi_1, ..., k)$: probability $V_k(i)$
 - making a transition from ${\bf k}$ to 1: probability $T_{{\bf k}{\bf l}}$
 - emission probability for base \boldsymbol{s}_{i+1} in state l
- In the end, we get

$$P(s,\pi^*) = \max_k V_k(n)$$

• Traceback recovers the best path $\pi^* = \arg \max_{\pi \in \Pi} P(s,\pi)$

Viterbi at the casino

- V_{loaded}(5) is the maximum of two probabilities: the most probable sequences such that either
 - 4'th throw used a loaded dice and it is continued to be used for 5th throw, or
 - The dice was switched from fair to loaded after 4th throw
- Simple recurrence gives the result:

$$V_{\text{loaded}}(5) = E_{\text{loaded}}(6) \cdot \max \begin{cases} V_{\text{loaded}}(4) \cdot T_{\text{loaded,loaded}} \\ V_{\text{fair}}(4) \cdot T_{\text{fair,loaded}} \end{cases}$$

Aalto University School of Science

Implementation detail: avoiding numerical underflow

- Multiplying small probabilities may easily cause numerical underflow
- In computer implementation, it is better to use logprobabilities instead
- The updates remain similar
 - multiplication changed to summation
 - $\log \max_k x_k = \max_k \log x_k$, for non-negative x_k
- Reusing the notation for V, E, and T for the logarithmic quantities

$$V_l(i+1) = E_l(s_{i+1}) + \max_k(V_k(i) + T_{kl})$$

Viterbi in R

$$V_l(i+1) = E_l(s_{i+1}) + \max_k(V_k(i) + T_{kl})$$

18

Aalto University School of Science

```
viterbi <- function(s, T, E) {</pre>
  \log E < \log (E)
  \log T < \log_{T}
  # Pre-allocate V and TB:
  V <- matrix(rep(0, nrow(T)*length(s)), nrow=nrow(T))</pre>
  TB <- matrix(rep(0, nrow(T)*length(s)), nrow=nrow(T))</pre>
  # Initialize the first column of V:
  V[,1] <- log2(1/nrow(V)) + t(log.E[s[1],])</pre>
  # Calculate the V table
  for (i in 2:length(s)) {
    for (1 in 1:nrow(V)) {
      V[1, i] <- max(log.T[,1] + V[, i-1])
      TB[1, i] \le which.max(log.T[,1] + V[,i-1])
      V[1, i] <- V[1, i] + log.E[s[i], 1]
    }
  log.prob <- max(V[,ncol(V)])</pre>
  k <- which.max(V[,ncol(V)])</pre>
  # Traceback
  path <- rep(NA, length(s))
  for (i in seq(length(s),2)) {
    path[i] < -k
    k \ll TB[k, i]
  }
  path[1] < -k
  res <- list()</pre>
  res$log.prob <- log.prob</pre>
  res$path <- path
  res$V <- V
  return(res)
```

Viterbi at the Casino	0.95 1: 1/6 2: 1/6 3: 1/6 4: 1/6 5: 1/6 6: 1/6 Fair 0.05 1: 1/10 2: 1/10 3: 1/10 4: 1/10 5: 1/10 6: 1/2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
> s [1] 3 2 2 1 2 3 6 6 6 6	<pre>> log2(E) [,1] [,2] [1,] -2.584963 -3.321928 [2,] -2.584963 -3.321928 [3,] -2.584963 -3.321928 [4,] -2.584963 -3.321928 [5,] -2.584963 -3.321928 [5,] -2.584963 -1.000000 > log2(T) [,1] [,2] [1,] -0.07400058 -4.3219281</pre>
<pre>> > viterbi.res\$v [,1] [,2] [,3] [,4] [,5]</pre>	[2,] -3.32192809 -0.1520031 [,6] [,7] [,8] [,9] [,10] 87978 -19.53874 -22.19770 -24.85667 -27.51563 69158 -22.20171 -23.35371 -24.50571 -25.65772

$$V_l(i+1) = E_l(s_{i+1}) + \max_k(V_k(i) + T_{kl})$$

Viterbi at the Casino	0.95	1: 1/6 2: 1/6 3: 1/6	2: 1/10 3: 1/10
$V_{fair}(1) = E_{fair}(3) + \log_2(1/2) = -2.585 - 1 = -3.585$		4: 1/6 5: 1/6 ◀ 6: 1/6 0.1	4: 1/10 5: 1/10 6: 1/2
$V_{\text{loaded}}(1) = E_{\text{loaded}}(3) + \log_2(1/2) = -3.3219 - 1 = -4.3219$)	Fair	Loaded
		[1,] -2.5849 [2,] -2.5849 [3,] -2.5849 [4,] -2.5849 [5,] -2.5849 [6,] -2.5849 > log2(T)	[,1] [,2] 963 -3.321928 963 -3.321928 963 -3.321928 963 -3.321928 963 -3.321928 963 -3.321928 963 -1.000000 [,1] [,2] 00058 -4.3219281
[1,] 3.584963 -6.243926 -8.902889 -11.56185 -14.22081 -16.87978 -19.5387	rbi at the Casino $E_{fair}(3) + \log_{2}(1/2) = -2.585 - 1 = -3.585$ $= E_{loaded}(3) + \log_{2}(1/2) = -3.3219 - 1 = -4.3219$ $E_{10aded}(3) + \log_{2}(1/2) = -3.3219 - 1 = -4.3219$ $E_{10aded}(3) + \log_{2}(1/2) = -3.3219 - 1 = -4.3219$ $E_{10aded}(3) + \log_{2}(1/2) = -3.3219 - 1 = -4.3219$	[,8] [.9770 -24.85	,9] [,10] 667 -27.51563
$V_{i}(i+1) = E_{i}(s_{i+1}) + \max(V_{i}(i) + T_{i+1})$			

$$V_{l}(i+1) = E_{l}(s_{i+1}) + \max_{k}(V_{k}(i) + T_{kl})$$

$$V_l(i+1) = E_l(s_{i+1}) + \max_k(V_k(i) + T_{kl})$$

Viterbi at the casino

• Viterbi estimates remarkably well the correct dice

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	6511664531326512456366646316366631623264552352666666625151631
Die	LLLLLFFFFFFFFFFFFFFLLLLLLLLLLLFFFFLLLLLL
Viterbi	LLLLLFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLL
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Parameter estimation for HMMs

Parameter estimation for HMMs

- So far we have assumed that we have knowledge of the transition probabilities and emission probabilities
- How to obtain these values if we only know
 - the emitted sequence and HMM structure (here: Fair, Loaded)?
 - possibly the hidden state sequence

Parameter estimation when the state sequence is known

- Assume we have
 - a set of training sequences $s^{(1)}$,..., $s^{(m)}$ where $s^{(i)} = (s_1^{(i)},...,s_{n(i)}^{(i)})$, e.g.
 - Sequences of rolls of dice: $s^{(1)} = (1,3,4,3,...), s^{(2)} = (5,6,4,3,...)$
 - Nucleotide sequences $s^{(1)} = AGTCGT... s^{(2)} = CTGTAT...,$
 - the set of states and corresponding state sequences of HMM
 - Which dice is being used: $y^{(1)} = FFFF..., y^{(2)} = LLFF...$
 - ORF/ non-ORF: $y^{(1)} = NNNYYY..., y^{(2)} = NNNNNN$
- The goal is to optimize HMM parameters
 - Transition probabilities $T_{\rm kl}$
 - Emission probabilities $E_k(s_i)$

Parameter estimation when the state sequence is known

- Transition probabilities
 - we examine the given state sequences $y^{(1)},...,y^{(m)}$
 - denote by t_{kl} the number of times transition k→l was taken among the sequences
 - Our estimate for the transition probability is

$$=\frac{t_{kl}+1}{\sum_{l'}(t_{kl'}+1)}$$

- Emission probabilities
 - we examine the emitted sequences s⁽¹⁾, ..., s^(m) and the state sequences y⁽¹⁾, ..., y^(m) together
 - denote by $e_k(b)$ the number of times b was emitted while in state k
 - The estimate for emission probability is

$$E_k(b) = \frac{e_k(b) + 1}{\sum_{b'} (e_k(b') + 1)}$$

 T_{kl}

Pseudo-counts $(t_{kl}+1, e_k(b)+1)$

- Pseudo-counts are typically used to make the models less prone to over-fitting due to insufficient data
- In HMMs, the pseudo-counts also correct a problem arising if some state k is not visited in the training data:
 - need to allocate some probability to so far unseen events
- In general, the pseudo-counts can be any positive real numbers, however
 - too large numbers will override the training data
 - too small numbers will cause the parameters to over-fit the training data (leads to poorer performance on new, yet unseen data)

Parameter estimation when the state sequence is unknown

- Depending on the application, sometimes we may assume we know the state sequence
 - In many cases we have a training set that contains the states e.g. known coding regions in genes, known CG rich regions, ...
- In other applications, such an assumption is not valid
 - which dice is used by the dishonest casino
 - data from newly sequenced organisms where no annotation has been done.

Parameter estimation when the state sequence is not known

- Assume we have
 - a set of training sequences $s^{\left(1\right)}$, ..., $s^{\left(m\right)}$, and the
 - set of states of the HMM
- The goal is to optimize HMM parameters
 - Transition probabilities T_{kl}
 - Emission probabilities $E_k(s_i)$
- Idea: choose the HMMs parameters so that the likelihood of the training data is maximized
- In the following, we present a training algorithm that uses as a subroutine the Viterbi algorithm to find the most probable path

Viterbi training

1. Initialize the HMM parameters in some way, e.g. setting

- i. $E_k(s) = 1/|\Sigma|$ uniformly, where Σ is the alphabet of symbols to emit
- ii. $T_{kl} = 1/N(k)$ uniformly, where N(k) is the number states that can follow state k
- Alternatively, one can use a "best guess"
 - e.g. in the genome segmentation example, compute transition probabilities from dinucleotide frequencies

Viterbi training

- **2.** Iterate the following, until parameters do not change:
 - i. For each sequence $s^{(i)}$, using Viterbi algorithm, find the most probable state sequence $\pi^{*(i)}$, given the current HMM parameters $\theta = (T,E)$
 - ii. Count how many times each transition $k \rightarrow l$ was taken in the optimal paths $\pi^{*(1)},...\pi^{*(m)}$, and denote that number by t_{kl}
 - iii. Set the new transition probabilities as

$$T_{kl} = \frac{t_{kl} + 1}{\sum_{l'} (t_{kl'} + 1)}$$

- iv. Count how many times each symbol b was emitted in each state k, and denote that number by $e_k(b)$
- v. Set the new emission probabilities as

$$E_k(b) = \frac{e_k(b) + 1}{\sum_{b'} (e_k(b') + 1)}$$

Viterbi training

- The above algorithm works in *batch mode*: it assumes all training data is already available
- The training can also work in *online mode*, where the model is re-estimated when new data arrives
- Also, the training can work just as well on a single long sequence as on a set of short sequences
- The casino example highlights this training mode

• Let us enter the occasionally dishonest casino, with our HMM, with initial guesses about the underlying model:

т	Fair	Loaded	Е	1	2	3	4	5	6
Fair	.90	.10	Fair	.167	.167	.167	.167	.167	.167
Loaded	.10	.90	Loaded	.10	.10	.10	.10	.10	.50

• We observe a sequence of rolls: 3,4,6,4,6,6,2,6,3,4,1,5,3

- We observe a sequence of rolls: 3,4,6,4,6,6,2,6,3,4,1,5,3
- With Viterbi estimation with the current model, we get: LLLLLLFFFFF
- Count transitions t and emissions e, add pseudo-counts

t+1	Fair	Loaded	e+1	1	2	3	4	5	6
Fair	4+1	0+1	Fair						
Loaded	1+1	7+1	Loaded	0+1	1+1	1+1	2+1	0+1	4+1

• Normalize to obtain estimated transition and emission probabilities $T_{kl} = \frac{t_{kl} + 1}{\sum_{l'}(t_{kl'} + 1)}$ $E_k(b) = \frac{e_k(b) + 1}{\sum_{b'}(e_k(b') + 1)}$

t+1	Fair	Loaded	e+1	1	2	3	4	5	6
Fair	4+1	0+1	Fair	1+1	0+1	2+1	1+1	1+1	0+1
Loaded	1+1	7+1	Loaded	0+1	1+1	1+1	2+1	0+1	4+1

т	Fair	Loaded	E	1	2	3	4	5	6
Fair	.83	.17	Fair	.18	.09	.27	.18	.18	.09
Loaded	.2	.8	Loaded	.07	.14	.14	.21	.07	.36

• We observe some more rolls: 5,3,4,2,1, 6,1,6,6,2,6,5

- All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1,
 6,1,6,6,2,6,5
- Viterbi estimation with the new model gives: LLLLLLFFFFFFFFFFLLLLLL
- Count transitions and emissions in all rolls seen so far, add pseudo-counts

t+1	Fair	Loaded	e+1	1	2	3	4	5	6
Fair	9+1	1+1	Fair						
Loaded	1+1	13+1	Loaded	1+1	2+1	1+1	2+1	1+1	8+1

 Normalize to obtain estimated transition and emission probabilities

t+1	Fair	Loaded	e+1	1	2	3	4	5	6
Fair	9+1	1+1	Fair	2+1	1+1	3+1	2+1	2+1	0+1
Loaded	1+1	13+1	Loaded	1+1	2+1	1+1	2+1	1+1	8+1
т	Fair	Loaded	Е	1	2	3	4	5	6
T Fair	Fair .83	Loaded .17	E Fair	1 .187	2 .125	3 .25	4 .187	5 .187	6 .063

 Casino closes, so we do not get more rolls, but we can continue training with the current data

- All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 6,1,6,6,2,6,5
- Viterbi estimation with the new model gives: LLLLLLLFFFFFFFFFFFLLLLLL
- This turns out to be the same predicted sequence as in previous step, so our model stays the same

т	Fair	Loaded	Е	1	2	3	4	5	6
Fair	.83	.17	Fair	.187	.125	.25	.187	.187	.063
Loaded	.125	.875	Loaded	.095	.14	.095	.14	.095	.43

• In general, with a longer sequence, more iterations could be needed for convergence

Viterbi training: convergence

- **If no more data arises** Viterbi training algorithm will eventually converge (and stop)
 - Each update of the parameters increases the probability of the most probable paths,
 - so the algorithm will never revisit a previous solution
 - There is only finite (but large) number of Viterbi paths to consider,
 - so we will eventually run out of solutions that we have not considered

Note: Accuracy of estimation depends on the amount of training data

True Model	Fair	Loaded	True	1	2	3	4	5
ir	.95	.05	Fair	.17	.17	.17	.17	.17
Loaded	.10	.90	Loaded	.10	.10	.10	.10	.10
300 rolls	Fair	Loaded	300 rolls	1	2	3	4	5
Fair	.73	.27	Fair	.19	.19	.23	.08	.23
Loaded	.29	.71	Loaded	.07	.10	.10	.17	.05
	_							
30000 rolls	Fair	Loaded	30000 rolls	1	2	3	4	5
Fair	.93	.07	Fair	.17	.17	.17	.17	.17
Loaded	.12	.88	Loaded	.10	.11	.10	.11	.10

