
CS-E5865 Computational

genomics
Autumn 2020, Lecture 4: Hidden Markov Models

Lecturer: Pekka Marttinen

Assistants: Alejandro Ponce de León, Zeinab Yousefi,
Onur Poyraz

Lecture 4, 2020

Our toolbox so far

1. Multinomial i.i.d model for sequences

2. Markov Models for modeling local dependencies:

3. Dynamic programming for fast computation over

sequences

4. Randomization for assessing statistical significance

2

Hidden Markov Models

• Hidden Markov Models (HMM) are the probabilistic

model of choice for biological sequence analysis (both

DNA and proteins)

• HMM combine multinomial and Markov sequence

models and uses dynamic programming for computation

3

https://en.wikipedia.org/wiki/Hidden_Markov_model

Hidden Markov Models

• A Hidden Markov Model (HMM) is composed of
– Set of (hidden) states, capable of emitting symbols according to

a probability distribution (in the base case: multinomial i.i.d)

– Set of transitions between the states, with transition
probabilities (a Markov chain)

• Two kinds of sequences:
– State sequence (hidden)  = (1 ,…, n) called the path

– Symbol sequence (observed): s = (s1 ,…., sn)

4

s1 s2 s3 s4 sn

1 2 3 4 n

Applications of Hidden Markov Models

• Segmentation of biological sequences into potentially

meaningful regions with precise boundaries

• Multiple alignment of biological sequences (profile

HMMs)

– Multiple sequence alignment can be efficiently solved by taking

the one-versus-all approach

– Profile HMM can be interpreted as a model for the family of

sequences

5

Applications of Hidden Markov Models

• Functional annotation can be achieved by matching a

sequence against a HMM trained to recognize particular

functional motifs.

• Gene finding state-of-the-art methods are based on

HMMs

– Previous models (e.g., start codon + non-stop codons + stop

codon) are not suited for eukaryotic genes or pseudogenes

6

Applications of Hidden Markov models

• Detection of recombination between bacterial species

(research at Aalto)

Marttinen et al. (2017),

https://doi.org/10.1101/059642

Chewapreecha et al. (2014),

Nature Genetics

Hidden Markov Models
• Basic idea: a sequence is indirectly generated by a Markov

chain

– The Markov chain has some hidden (unknown) state for each

position in the sequence

– We observe the character generated at each position according to a

multinomial distribution that depends on the state

• The sequence is generated by two random processes:

1) generate the hidden Markov chain

2) generate the symbol in each state of the chain using a multinomial

model

8

s1 s2 s3 s4 sn

1 2 3 4 n

Hidden Markov Models
• Transition probability: the probability of switching between hidden states

in the Markov chain

– Tkl = P(i = l | i-1 = k) for i=2,...,n

– T0k= P(1 = k)

• Emission probability: the probability of emitting a certain symbol in a
given state k
– Ek(b) = P(si = b | i = k)

– conditional on current state, si is independent of the previous symbol si-1

• The joint probability of s=(s1, s2, …, sn) and =(1, 2, …, n) is:

9

s1 s2 s3 s4 sn

1 2 3 4 n

Simple running example: occasionally
dishonest casino

• Casino uses a fair dice most of
the time, but switches to the
loaded dice once in a while

• Can we detect which dice is in
use at any given time, just by
observing the sequence of
rolls?

10

Sequential view

11

Loaded

Fair

1 4 3 6 6 4

Observed sequence of dice rolls:

FL L LFF

Hidden path: the sequence of which dice being used:

Viterbi algorithm – finding the most

probable state sequence

12

Decoding: finding the most probable path

• Decoding: Finding the most

probable state sequence

(path *) that could have

generated the observed rolls

• The number of possible

paths grows exponentially, so

we need efficient algorithms

13

Viterbi algorithm
• Dynamic programming, based on tabulating

– probability Vk(i) of the most probable hidden path (π1, …, πi) ending in state

πi=k associated with the prefix s1,…,si

– pointers for traceback

– Formally:

• Table V of size m×n
– m=number of hidden states

– n=length of the observed sequence

– V(k,i)=Vk(i)

14

Viterbi algorithm

• Updating the table: the information in each column is sufficient for

computing the next column:

– for prefix (s1, …, si) find a state k that maximizes the combined probability of

• the best path to k, (π1, …, k): probability Vk(i)

• making a transition from k to l: probability Tkl

• emission probability for base si+1 in state l

• In the end, we get

• Traceback recovers the best path

15

Viterbi at the casino

• Vloaded(5) is the maximum

of two probabilities: the

most probable sequences

such that either

– 4’th throw used a loaded

dice and it is continued to be

used for 5th throw, or

– The dice was switched from

fair to loaded after 4th throw

• Simple recurrence gives

the result:

16

Implementation detail: avoiding

numerical underflow

• Multiplying small probabilities may easily cause

numerical underflow

• In computer implementation, it is better to use log-

probabilities instead

• The updates remain similar

– multiplication changed to summation

– log maxk xk = maxk log xk, for non-negative xk

• Reusing the notation for V, E, and T for the logarithmic

quantities

17

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl)

Viterbi in R

18

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl)

Viterbi at the Casino

19

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl)

Viterbi at the Casino

20

Vfair(1) = Efair(3) + log2(1/2) = −2.585 − 1 = −3.585

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl)

Vloaded(1) = Eloaded(3) + log2(1/2) = −3.3219 − 1 = −4.3219

Viterbi at the Casino

21

Vloaded(4) = Eloaded(1) + max ൝
Vfair 3 + Tfair,loaded

Vloaded 3 + Tloaded,loaded

= −3.3219 + 𝑚𝑎𝑥 ቄ
−8.9029 − 4.3219
−11.2698 − 0.152

= −14.7437

Vl (i+1) = E l (si+1)+ max
k

(Vk (i)+Tkl)

Viterbi at the casino
• Viterbi estimates remarkably well the correct dice

22

Parameter estimation for HMMs

23

Parameter estimation for HMMs

• So far we have assumed that we

have knowledge of the transition

probabilities and emission

probabilities

• How to obtain these values if we

only know

– the emitted sequence and HMM

structure (here: Fair, Loaded)?

– possibly the hidden state sequence

24

Parameter estimation when the state
sequence is known

• Assume we have

– a set of training sequences s(1),…, s(m) where s(i) = (s1
(i),…,sn(i)

(i)), e.g.

• Sequences of rolls of dice: s(1) = (1,3,4,3,…), s(2) = (5,6,4,3,…)

• Nucleotide sequences s(1) = AGTCGT… s(2) = CTGTAT…,

– the set of states and corresponding state sequences of HMM

• Which dice is being used: y(1) = FFFF…, y(2) = LLFF…

• ORF/ non-ORF: y(1) = NNNYYY…, y(2) = NNNNNN

• The goal is to optimize HMM parameters

– Transition probabilities Tkl

– Emission probabilities Ek(si)

25

Parameter estimation when the state
sequence is known
• Transition probabilities

– we examine the given state sequences y(1),…,y(m)

– denote by tkl the number of times transition k➔l was taken among
the sequences

– Our estimate for the transition probability is

• Emission probabilities
– we examine the emitted sequences s(1), …, s(m) and the state

sequences y(1), …, y(m) together

– denote by ek(b) the number of times b was emitted while in state k

– The estimate for emission probability is

26

Pseudo-counts (tkl+1, ek(b)+1)

• Pseudo-counts are typically used to make the models
less prone to over-fitting due to insufficient data

• In HMMs, the pseudo-counts also correct a problem
arising if some state k is not visited in the training data:

• need to allocate some probability to so far unseen events

• In general, the pseudo-counts can be any positive real
numbers, however

• too large numbers will override the training data

• too small numbers will cause the parameters to over-fit the training
data (leads to poorer performance on new, yet unseen data)

27

Parameter estimation when the state
sequence is unknown

• Depending on the application, sometimes we may assume
we know the state sequence
– In many cases we have a training set that contains the states e.g.

known coding regions in genes, known CG rich regions, …

• In other applications, such an assumption is not valid
– which dice is used by the dishonest casino

– data from newly sequenced organisms where no annotation has
been done.

28

Parameter estimation when the state
sequence is not known

• Assume we have

– a set of training sequences s(1), …, s(m) , and the

– set of states of the HMM

• The goal is to optimize HMM parameters

– Transition probabilities Tkl

– Emission probabilities Ek(si)

• Idea: choose the HMMs parameters so that the likelihood of

the training data is maximized

• In the following, we present a training algorithm that uses as

a subroutine the Viterbi algorithm to find the most probable

path

29

Viterbi training

1. Initialize the HMM parameters in some way, e.g. setting

i. Ek(s) = 1/|Σ| uniformly, where Σ is the alphabet of symbols to emit

ii. Tkl = 1/N(k) uniformly, where N(k) is the number states that can

follow state k

• Alternatively, one can use a “best guess”

– e.g. in the genome segmentation example, compute transition

probabilities from dinucleotide frequencies

30

Viterbi training

2. Iterate the following, until parameters do not change:
i. For each sequence s(i), using Viterbi algorithm, find the most

probable state sequence π*(i), given the current HMM
parameters θ=(T,E)

ii. Count how many times each transition k➔l was taken in the
optimal paths π*(1),…π*(m), and denote that number by tkl

iii. Set the new transition probabilities as

iv. Count how many times each symbol b was emitted in each state
k, and denote that number by ek(b)

v. Set the new emission probabilities as

31

Viterbi training

• The above algorithm works in batch mode: it assumes all
training data is already available

• The training can also work in online mode, where the
model is re-estimated when new data arrives

• Also, the training can work just as well on a single long
sequence as on a set of short sequences

• The casino example highlights this training mode

32

Viterbi training at the casino

• Let us enter the occasionally dishonest casino, with our
HMM, with initial guesses about the underlying model:

• We observe a sequence of rolls: 3,4,6,4,6,6,2,6,3,4,1,5,3

33

T Fair Loaded

Fair .90 .10

Loaded .10 .90

E 1 2 3 4 5 6

Fair .167 .167 .167 .167 .167 .167

Loaded .10 .10 .10 .10 .10 .50

Viterbi training at the casino

• We observe a sequence of rolls:

3,4,6,4,6,6,2,6,3,4,1,5,3

• With Viterbi estimation with the current model, we get:

LLLLLLLLFFFFF

• Count transitions t and emissions e, add pseudo-counts

34

t+1 Fair Loaded

Fair 4+1 0+1

Loaded 1+1 7+1

e+1 1 2 3 4 5 6

Fair 1+1 0+1 2+1 1+1 1+1 0+1

Loaded 0+1 1+1 1+1 2+1 0+1 4+1

Viterbi training at the casino

• Normalize to obtain estimated transition and emission

probabilities

• We observe some more rolls: 5,3,4,2,1, 6,1,6,6,2,6,5

35

t+1 Fair Loaded

Fair 4+1 0+1

Loaded 1+1 7+1

e+1 1 2 3 4 5 6

Fair 1+1 0+1 2+1 1+1 1+1 0+1

Loaded 0+1 1+1 1+1 2+1 0+1 4+1

T Fair Loaded

Fair .83 .17

Loaded .2 .8

E 1 2 3 4 5 6

Fair .18 .09 .27 .18 .18 .09

Loaded .07 .14 .14 .21 .07 .36

Viterbi training at the casino

• All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1,

6,1,6,6,2,6,5

• Viterbi estimation with the new model gives:

LLLLLLLLFFFFFFFFFFLLLLLLL

• Count transitions and emissions in all rolls seen so far,

add pseudo-counts

36

t+1 Fair Loaded

Fair 9+1 1+1

Loaded 1+1 13+1

e+1 1 2 3 4 5 6

Fair 2+1 1+1 3+1 2+1 2+1 0+1

Loaded 1+1 2+1 1+1 2+1 1+1 8+1

Viterbi training at the casino

• Normalize to obtain estimated transition and emission
probabilities

• Casino closes, so we do not get more rolls, but we can
continue training with the current data

37

T Fair Loaded

Fair .83 .17

Loaded .125 .875

E 1 2 3 4 5 6

Fair .187 .125 .25 .187 .187 .063

Loaded .095 .14 .095 .14 .095 .43

t+1 Fair Loaded

Fair 9+1 1+1

Loaded 1+1 13+1

e+1 1 2 3 4 5 6

Fair 2+1 1+1 3+1 2+1 2+1 0+1

Loaded 1+1 2+1 1+1 2+1 1+1 8+1

Viterbi training at the casino

• All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1,
6,1,6,6,2,6,5

• Viterbi estimation with the new model gives:
LLLLLLLLFFFFFFFFFFLLLLLLL

• This turns out to be the same predicted sequence as in
previous step, so our model stays the same

• In general, with a longer sequence, more iterations could be
needed for convergence

38

T Fair Loaded

Fair .83 .17

Loaded .125 .875

E 1 2 3 4 5 6

Fair .187 .125 .25 .187 .187 .063

Loaded .095 .14 .095 .14 .095 .43

Viterbi training: convergence

• If no more data arises Viterbi training algorithm will
eventually converge (and stop)
– Each update of the parameters increases the probability of the

most probable paths,

• so the algorithm will never revisit a previous solution

– There is only finite (but large) number of Viterbi paths to
consider,

• so we will eventually run out of solutions that we have not
considered

39

Note: Accuracy of estimation depends on the
amount of training data

True 1 2 3 4 5 6

Fair .17 .17 .17 .17 .17 .17

Loaded .10 .10 .10 .10 .10 .50

True Model Fair Loaded

Fair .95 .05

Loaded .10 .90

300

rolls

1 2 3 4 5 6

Fair .19 .19 .23 .08 .23 .08

Loaded .07 .10 .10 .17 .05 .52

30000

rolls

1 2 3 4 5 6

Fair .17 .17 .17 .17 .17 .17

Loaded .10 .11 .10 .11 .10 .48

300 rolls Fair Loaded

Fair .73 .27

Loaded .29 .71

30000

rolls

Fair Loaded

Fair .93 .07

Loaded .12 .88

40

