Aalto University
School of Science

CS-E5865 Computational genomics

Autumn 2020, Lecture 4: Hidden Markov Models Lecturer: Pekka Marttinen

Assistants: Alejandro Ponce de León, Zeinab Yousefi, Onur Poyraz

Our toolbox so far

1. Multinomial i.i.d model for sequences

$$
P(s)=\prod_{i=1}^{n} p(\mathbf{s}(i))=\prod_{x \in \mathcal{N}} p_{x}^{n(x, s)}
$$

2. Markov Models for modeling local dependencies:

$$
P(s)=P\left(s_{1}\right) \prod_{i=2}^{n} P\left(s_{i} \mid s_{i-1}\right)
$$

3. Dynamic programming for fast computation over sequences
4. Randomization for assessing statistical significance

Hidden Markov Models

- Hidden Markov Models (HMM) are the probabilistic model of choice for biological sequence analysis (both DNA and proteins)
- HMM combine multinomial and Markov sequence models and uses dynamic programming for computation

https://en.wikipedia.org/wiki/Hidden_Markov_model

Hidden Markov Models

- A Hidden Markov Model (HMM) is composed of
- Set of (hidden) states, capable of emitting symbols according to a probability distribution (in the base case: multinomial i.i.d)
- Set of transitions between the states, with transition probabilities (a Markov chain)
- Two kinds of sequences:
- State sequence (hidden) $\pi=\left(\pi_{1}, \ldots, \pi_{\mathrm{n}}\right)$ called the path
- Symbol sequence (observed): $s=\left(s_{1}, \ldots . ., s_{n}\right)$

Applications of Hidden Markov Models

- Segmentation of biological sequences into potentially meaningful regions with precise boundaries
- Multiple alignment of biological sequences (profile HMMs)
- Multiple sequence alignment can be efficiently solved by taking the one-versus-all approach
- Profile HMM can be interpreted as a model for the family of sequences

Applications of Hidden Markov Models

- Functional annotation can be achieved by matching a sequence against a HMM trained to recognize particular functional motifs.
- Gene finding state-of-the-art methods are based on HMMs
- Previous models (e.g., start codon + non-stop codons + stop codon) are not suited for eukaryotic genes or pseudogenes

Applications of Hidden Markov models

- Detection of recombination between bacterial species (research at Aalto)

Marttinen et al. (2017),
https://doi.org/10.1101/059642

Chewapreecha et al. (2014), Nature Genetics

Hidden Markov Models

- Basic idea: a sequence is indirectly generated by a Markov chain
- The Markov chain has some hidden (unknown) state for each position in the sequence
- We observe the character generated at each position according to a multinomial distribution that depends on the state
- The sequence is generated by two random processes:

1) generate the hidden Markov chain
2) generate the symbol in each state of the chain using a multinomial model

Hidden Markov Models

- Transition probability: the probability of switching between hidden states in the Markov chain
$-\mathrm{T}_{\mathrm{kl}}=\mathrm{P}\left(\pi_{\mathrm{i}}=1 \mid \pi_{\mathrm{i}-1}=\mathrm{k}\right)$ for $\mathrm{i}=2, \ldots, \mathrm{n}$
$-\mathrm{T}_{0 \mathrm{k}}=\mathrm{P}\left(\pi_{1}=\mathrm{k}\right)$
- Emission probability: the probability of emitting a certain symbol in a given state k
$-\mathrm{E}_{\mathrm{k}}(\mathrm{b})=\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}=\mathrm{b} \mid \pi_{\mathrm{i}}=\mathrm{k}\right)$
- conditional on current state, s_{i} is independent of the previous symbol s_{i-1}
- The joint probability of $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is:

$$
P(s, \pi)=T_{0, \pi_{1}} E_{\pi_{1}}\left(s_{1}\right) \prod_{i=1}^{n-1} T_{\pi_{i}, \pi_{i+1}} E_{\pi_{i+1}}\left(s_{i+1}\right)
$$

Simple running example: occasionally dishonest casino

- Casino uses a fair dice most of the time, but switches to the loaded dice once in a while
- Can we detect which dice is in use at any given time, just by observing the sequence of rolls?

Sequential view

Observed sequence of dice rolls:

Hidden path: the sequence of which dice being used:

Viterbi algorithm - finding the most probable state sequence

Aalto University
School of Science

Decoding: finding the most probable path

- Decoding: Finding the most probable state sequence (path π^{*}) that could have generated the observed rolls

Observed sequence of die rolls:

Hidden path: the sequence of which die being used:

- The number of possible paths grows exponentially, so we need efficient algorithms

$$
P(s, \pi)=T_{0, \pi_{1}} E_{\pi_{1}}\left(s_{1}\right) \prod_{i=1}^{n-1} T_{\pi_{i}, \pi_{i+1}} E_{\pi_{i+1}}\left(s_{i+1}\right)
$$

Viterbi algorithm

- Dynamic programming, based on tabulating
- probability $\mathrm{V}_{\mathrm{k}}(\mathrm{i})$ of the most probable hidden path ($\pi_{1}, \ldots, \pi_{\mathrm{i}}$) ending in state $\pi_{i}=k$ associated with the prefix $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}}$
- pointers for traceback
- Formally:

$$
V_{k}(i)=\max _{\pi_{1}, \ldots, \pi_{i-1}} p\left(\pi_{1}, \ldots, \pi_{i-1}, \pi_{i}=k, s_{1}, \ldots, s_{i}\right)
$$

- Table V of size $m \times n$
- m=number of hidden states
- $n=l e n g t h$ of the observed sequence
$-\mathrm{V}(\mathrm{k}, \mathrm{i})=\mathrm{V}_{\mathrm{k}}(\mathrm{i})$

Viterbi algorithm

- Updating the table: the information in each column is sufficient for computing the next column:

$$
V_{l}(i+1)=E_{l}\left(s_{i+1}\right) \max _{k} V_{k}(i) T_{k l}
$$

- for prefix $\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}}\right)$ find a state k that maximizes the combined probability of
- the best path to $\mathrm{k},\left(\pi_{1}, \ldots, \mathrm{k}\right)$: probability $\mathrm{V}_{\mathrm{k}}(\mathrm{i})$
- making a transition from k to l : probability T_{kl}
- emission probability for base $\mathrm{s}_{\mathrm{i}+1}$ in state l
- In the end, we get

$$
P\left(s, \pi^{*}\right)=\max _{k} V_{k}(n)
$$

- Traceback recovers the best path $\pi^{*}=\arg \max _{\pi \in \Pi} P(s, \pi)$

Viterbi at the casino

- $\mathrm{V}_{\text {loaded }}(5)$ is the maximum of two probabilities: the most probable sequences such that either
- 4'th throw used a loaded dice and it is continued to be used for $5^{\text {th }}$ throw, or
- The dice was switched from fair to loaded after $4^{\text {th }}$ throw
- Simple recurrence gives

Observed sequence of die rolls:

Hidden path: the sequence of which die being used:
 the result:

$$
V_{\text {loaded }}(5)=E_{\text {loaded }}(6) \cdot \max \left\{\begin{array}{l}
V_{\text {loaded }}(4) \cdot T_{\text {loaded }, \text { loaded }} \\
V_{\text {fair }}(4) \cdot T_{\text {fair,loaded }}
\end{array}\right.
$$

Implementation detail: avoiding numerical underflow

- Multiplying small probabilities may easily cause numerical underflow
- In computer implementation, it is better to use logprobabilities instead
- The updates remain similar
- multiplication changed to summation
- $\log \max _{\mathrm{k}} \mathrm{x}_{\mathrm{k}}=\max _{\mathrm{k}} \log \mathrm{x}_{\mathrm{k}}$, for non-negative x_{k}
- Reusing the notation for V, E, and T for the logarithmic quantities

$$
V_{l}(i+1)=E_{l}\left(s_{i+1}\right)+\max _{k}\left(V_{k}(i)+T_{k l}\right)
$$

Viterbi in R

$$
V_{l}(i+1)=E_{l}\left(s_{i+1}\right)+\max _{k}\left(V_{k}(i)+T_{k l}\right)
$$

```
viterbi <- function(s, T, E) {
    log.E <- log2(E)
    log.T <- log2(T)
    # Pre-allocate V and TB:
    V <- matrix(rep(0, nrow(T)*1ength(s)), nrow=nrow(T))
    TB <- matrix(rep(0, nrow(T)*length(s)), nrow=nrow(T))
    # Initialize the first column of V:
    V[,1] <- log2(1/nrow(V)) + t(log.E[s[1],])
    # Calculate the v table
    for (i in 2:1ength(s)) {
        for (1 in 1:nrow(V)) {
            V[1, i] <- max(log.T[,1] + V[, i-1])
            TB[1, i] <- which.max(log.T[,1] + V[,i-1])
            V[1, i] <- V[1, i] + log.E[s[i], 1]
        }
    }
    log.prob <- max(V[,ncol(V)])
    k <- which.max(V[,ncol(V)])
    # Traceback
    path <- rep(NA, length(s))
    for (i in seq(length(s),2)) {
        path[i] <- k
        k <- TB[k, i]
    }
    path[1] <- k
    res <- list()
    res$log.prob <- log.prob
    res$path <- path
    res$V <- V
    return(res)
```


Viterbi at the Casino

$V_{l}(i+1)=E_{l}\left(s_{i+1}\right)+\max _{k}\left(V_{k}(i)+T_{k l}\right)$

School of Science

Viterbi at the Casino

$$
\begin{aligned}
& \mathrm{V}_{\text {fair }}(1)=\mathrm{E}_{\text {fair }}(3)+\log _{2}(1 / 2)=-2.585-1=-3.585 \\
& \mathrm{~V}_{\text {loaded }}(1)=\mathrm{E}_{\text {loaded }}(3)+\log _{2}(1 / 2)=-3.3219-1=-4.3219
\end{aligned}
$$

> $\log 2(E)$	
	[,2]
[1,] -2.584963	-3. 321928
[2,] -2.584963	-3.321928
[3,] -2.584963	-3.321928
[4,] -2.584963	-3.321928
[5,] -2.584963	-3.321928
[6,] -2. 584963	-1.000000
> $\log 2(T)$	
	[,2]
[1,] -0.0740005	[4.3219281
[2,] -3.32192809	09 -0.1520031

$V_{l}(i+1)=E_{l}\left(s_{i+1}\right)+\max _{k}\left(V_{k}(i)+T_{k l}\right)$

Viterbi at the Casino

$$
\begin{aligned}
\mathrm{V}_{\text {loaded }}(4) & =\mathrm{E}_{\text {loaded }}(1)+\max \left\{\begin{array}{c}
\mathrm{V}_{\text {fair }}(3)+\mathrm{T}_{\text {fair,loaded }} \\
\mathrm{V}_{\text {loaded }}(3)+\mathrm{T}_{\text {loaded,loaded }}
\end{array}\right. \\
& =-3.3219+\max \left\{\begin{array}{l}
-8.9029-4.3219 \\
-11.2698-0.152=-14.7437
\end{array}\right.
\end{aligned}
$$

$V_{l}(i+1)=E_{l}\left(s_{i+1}\right)+\max _{k}\left(V_{k}(i)+T_{k l}\right)$

Viterbi at the casino

- Viterbi estimates remarkably well the correct dice

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Viterbi	FFFL
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Aalto University
School of Science

Parameter estimation for HMMs

Parameter estimation for HMMs

- So far we have assumed that we have knowledge of the transition probabilities and emission probabilities
- How to obtain these values if we only know
- the emitted sequence and HMM structure (here: Fair, Loaded)?
- possibly the hidden state sequence

Parameter estimation when the state sequence is known

- Assume we have
- a set of training sequences $s^{(1)}, \ldots, s^{(m)}$ where $s^{(i)}=\left(s_{1}{ }^{(i)}, \ldots, s_{n(i)}{ }^{(i)}\right)$, e.g.
- Sequences of rolls of dice: $s^{(1)}=(1,3,4,3, \ldots), s^{(2)}=(5,6,4,3, \ldots)$
- Nucleotide sequences $s^{(1)}=$ AGTCGT... $s^{(2)}=$ CTGTAT...,
- the set of states and corresponding state sequences of HMM
- Which dice is being used: $\mathrm{y}^{(1)}=$ FFFF..., $\mathrm{y}^{(2)}=$ LLFF...
- ORF/ non-ORF: $\mathrm{y}^{(1)}=$ NNNYYY..., $\mathrm{y}^{(2)}=$ NNNNNN
- The goal is to optimize HMM parameters
- Transition probabilities T_{kl}
- Emission probabilities $\mathrm{E}_{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right)$

Parameter estimation when the state sequence is known
 - Transition probabilities

- we examine the given state sequences $y^{(1)}, \ldots, y^{(m)}$
- denote by t_{kl} the number of times transition $\mathrm{k} \rightarrow \mathrm{l}$ was taken among the sequences
- Our estimate for the transition probability is $\quad T_{k l}=\frac{t_{k l}+1}{\sum_{l^{\prime}}\left(t_{k l^{\prime}}+1\right)}$
- Emission probabilities
- we examine the emitted sequences $s^{(1)}, \ldots, s^{(m)}$ and the state sequences $y^{(1)}, \ldots, y^{(m)}$ together
- denote by $\mathrm{e}_{\mathrm{k}}(\mathrm{b})$ the number of times b was emitted while in state k
- The estimate for emission probability is

$$
E_{k}(b)=\frac{e_{k}(b)+1}{\sum_{b^{\prime}}\left(e_{k}\left(b^{\prime}\right)+1\right)}
$$

Pseudo-counts ($\mathrm{t}_{\mathrm{kl}}+1, \mathrm{e}_{\mathrm{k}}(\mathrm{b})+1$)

- Pseudo-counts are typically used to make the models less prone to over-fitting due to insufficient data
- In HMMs, the pseudo-counts also correct a problem arising if some state k is not visited in the training data:
- need to allocate some probability to so far unseen events
- In general, the pseudo-counts can be any positive real numbers, however
- too large numbers will override the training data
- too small numbers will cause the parameters to over-fit the training data (leads to poorer performance on new, yet unseen data)

Parameter estimation when the state sequence is unknown

- Depending on the application, sometimes we may assume we know the state sequence
- In many cases we have a training set that contains the states e.g. known coding regions in genes, known CG rich regions, ...
- In other applications, such an assumption is not valid
- which dice is used by the dishonest casino
- data from newly sequenced organisms where no annotation has been done.

Parameter estimation when the state sequence is not known

- Assume we have
- a set of training sequences $s^{(1)}, \ldots, s^{(m)}$, and the
- set of states of the HMM
- The goal is to optimize HMM parameters
- Transition probabilities T_{kl}
- Emission probabilities $\mathrm{E}_{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right)$
- Idea: choose the HMMs parameters so that the likelihood of the training data is maximized
- In the following, we present a training algorithm that uses as a subroutine the Viterbi algorithm to find the most probable path

Viterbi training

1. Initialize the HMM parameters in some way, e.g. setting
i. $\quad \mathrm{E}_{\mathrm{k}}(\mathrm{s})=1 /|\Sigma|$ uniformly, where Σ is the alphabet of symbols to emit
ii. $\quad \mathrm{T}_{\mathrm{kl}}=1 / \mathrm{N}(\mathrm{k})$ uniformly, where $\mathrm{N}(\mathrm{k})$ is the number states that can follow state k

- Alternatively, one can use a "best guess"
- e.g. in the genome segmentation example, compute transition probabilities from dinucleotide frequencies

Viterbi training

2. Iterate the following, until parameters do not change:
i. For each sequence $s^{(i)}$, using Viterbi algorithm, find the most probable state sequence $\pi^{*(i)}$, given the current HMM parameters $\theta=(\mathrm{T}, \mathrm{E})$
ii. Count how many times each transition $\mathrm{k} \rightarrow \mathrm{l}$ was taken in the optimal paths $\pi^{*(1)}, \ldots \pi^{*(m)}$, and denote that number by t_{kl}
iii. Set the new transition probabilities as

$$
T_{k l}=\frac{t_{k l}+1}{\sum_{l^{\prime}}\left(t_{k l^{\prime}}+1\right)}
$$

iv. Count how many times each symbol b was emitted in each state k , and denote that number by $\mathrm{e}_{\mathrm{k}}(\mathrm{b})$
v. Set the new emission probabilities as

$$
E_{k}(b)=\frac{e_{k}(b)+1}{\sum_{b^{\prime}}\left(e_{k}\left(b^{\prime}\right)+1\right)}
$$

Viterbi training

- The above algorithm works in batch mode: it assumes all training data is already available
- The training can also work in online mode, where the model is re-estimated when new data arrives
- Also, the training can work just as well on a single long sequence as on a set of short sequences
- The casino example highlights this training mode

Viterbi training at the casino

- Let us enter the occasionally dishonest casino, with our HMM, with initial guesses about the underlying model:

T	Fair	Loaded
Fair	.90	.10
Loaded	.10	.90

E	$\mathbf{1}$	2	3	4	5	6
Fair	.167	.167	.167	.167	.167	.167
Loaded	.10	.10	.10	.10	.10	.50

- We observe a sequence of rolls: $3,4,6,4,6,6,2,6,3,4,1,5,3$

Viterbi training at the casino

- We observe a sequence of rolls: 3,4,6,4,6,6,2,6,3,4,1,5,3
- With Viterbi estimation with the current model, we get: LLLLLLLLFFFFF
- Count transitions t and emissions e, add pseudo-counts

$t+1$	Fair	Loaded
Fair	$4+1$	$0+1$
Loaded	$1+1$	$7+1$

$e+1$	1	2	3	4	5	6
Fair	$1+1$	$0+1$	$2+1$	$1+1$	$1+1$	$0+1$
Loaded	$0+1$	$1+1$	$1+1$	$2+1$	$0+1$	$4+1$

Viterbi training at the casino

- Normalize to obtain estimated transition and emission probabilities

$$
T_{k l}=\frac{t_{k l}+1}{\sum_{l^{\prime}}\left(t_{k l^{\prime}}+1\right)}
$$

$$
E_{k}(b)=\frac{e_{k}(b)+1}{\sum_{b^{\prime}}\left(e_{k}\left(b^{\prime}\right)+1\right)}
$$

$t+1$	Fair	Loaded
Fair	$4+1$	$0+1$
Loaded	$1+1$	$7+1$

$e+1$	1	2	3	4	5	6
Fair	$1+1$	$0+1$	$2+1$	$1+1$	$1+1$	$0+1$
Loaded	$0+1$	$1+1$	$1+1$	$2+1$	$0+1$	$4+1$

T	Fair	Loaded
Fair	.83	.17
Loaded	.2	.8

E	1	2	3	4	5	6
Fair	.18	.09	.27	.18	.18	.09
Loaded	.07	.14	.14	.21	.07	.36

- We observe some more rolls: 5,3,4,2,1, 6,1,6,6,2,6,5

Viterbi training at the casino

- All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 6,1,6,6,2,6,5
- Viterbi estimation with the new model gives: LLLLLLLLFFFFFFFFFFFLLLLLLL
- Count transitions and emissions in all rolls seen so far, add pseudo-counts

| $t+1$ | Fair | Loaded | $\epsilon+1$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fair | $9+1$ | $1+1$ | Fair | $2+1$ | $1+1$ | $3+1$ | $2+1$ | $2+1$ | $0+1$ |
| Loaded | $1+1$ | $13+1$ | Loaded | $1+1$ | $2+1$ | $1+1$ | $2+1$ | $1+1$ | $8+1$ |

Viterbi training at the casino

- Normalize to obtain estimated transition and emission probabilities

| $t+1$ | Fair | Loaded | | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fair | $9+1$ | $1+1$ | Fair | $2+1$ | $1+1$ | $3+1$ | $2+1$ | $2+1$ | $0+1$ |
| Loaded | $1+1$ | $13+1$ | Loaded | $1+1$ | $2+1$ | $1+1$ | $2+1$ | $1+1$ | $8+1$ |
| T | Fair | Loaded | E | 1 | 2 | 3 | 4 | 5 | 6 |
| Fair | .83 | .17 | Fair | .187 | .125 | .25 | .187 | .187 | .063 |
| Loaded | .125 | .875 | Loaded | .095 | .14 | .095 | .14 | .095 | .43 |

- Casino closes, so we do not get more rolls, but we can continue training with the current data

Viterbi training at the casino

- All rolls seen so far: $3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1$, 6,1,6,6,2,6,5
- Viterbi estimation with the new model gives: LLLLLLLLFFFFFFFFFFLLLLLLL
- This turns out to be the same predicted sequence as in previous step, so our model stays the same

T	Fair	Loaded	E	1	2	3	4	5	6
Fair	.83	.17	Fair	.187	.125	.25	.187	.187	.063
Loaded	.125	.875	Loaded	.095	.14	.095	.14	.095	.43

- In general, with a longer sequence, more iterations could be needed for convergence

Viterbi training: convergence

- If no more data arises Viterbi training algorithm will eventually converge (and stop)
- Each update of the parameters increases the probability of the most probable paths,
- so the algorithm will never revisit a previous solution
- There is only finite (but large) number of Viterbi paths to consider,
- so we will eventually run out of solutions that we have not considered

Note: Accuracy of estimation depends on the amount of training data

True Model	Fair	Loaded
Fair	.95	.05
Loaded	.10	.90

| True | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fair | .17 | .17 | .17 | .17 | .17 | .17 |
| Loaded | .10 | .10 | .10 | .10 | .10 | .50 |

300 rolls	Fair	Loaded
Fair	.73	.27
Loaded	.29	.71

300 rolls	1	2	3	4	5	6
Fair	.19	.19	.23	.08	.23	.08
Loaded	.07	.10	.10	.17	.05	.52

30000 rolls	Fair	Loaded
Fair	.93	.07
Loaded	.12	.88

30000 rolls	1	2	3	4	5	6
Fair	.17	.17	.17	.17	.17	.17
Loaded	.10	.11	.10	.11	.10	.48

