CS-E5865 Computational
genomics

Autumn 2020, Lecture 4: Hidden Markov Models

Lecturer: Pekka Marttinen
Assistants: Alejandro Ponce de Le6n, Zeinab Yousefi,
Onur Poyraz

Lecture 4, 2020



Our toolbox so far

1. Multinomial I.l.d mode! for sequences

P(s) = HP(S(%)) = | B2

zeN

2. Markov Models for modeling local dependencies:

P(s) = sl)HP (si|si—1)

3. Dynamic programming for fast computation over
sequences

4. Randomization for assessing statistical significance
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« Hidden Markov Models (HMM) are the probabilistic

model of choice for biological sequence analysis (both
DNA and proteins)

« HMM combine multinomial and Markov seguence
models and uses dynamic programming for computation

https://en.wikipedia.org/wiki/Hidden_Markov_model
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Hidden Markov Models
e A Hidden Markov Model (HMM) is composed of

— Set of (hidden) states, capable of emitting symbols according to
a probability distribution (in the base case: multinomial i.i.d)

— Set of transitions between the states, with transition
probabilities (a Markov chain)

« Two kinds of sequences:
— State sequence (hidden) n = (wy,..., m,) called the path
— Symbol sequence (observed): s = (S1,...., Sn)
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of biological sequences into potentially
meaningful regions with precise boundaries

of biological sequences (profile

HMMs)
— Multiple sequence alignment can be efficiently solved by taking
the one-versus-all approach
— Profile HMM can be interpreted as a model for the family of
seguences
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can be achieved by matching a
sequence against a HMM trained to recognize particular
functional motifs.

state-of-the-art methods are based on

HMMs

— Previous models (e.g., start codon + non-stop codons + stop
codon) are not suited for eukaryotic genes or pseudogenes
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Applications of Hidden Markov models

« Detection of recombination between bacterial species
(research at Aalto)

S
o

mitis -
oralis -
pseudop. L .
infantis -
sp -

dysgalactiae -

L I e —
Marttinen et al. (2017), Chewapreecha et al. (2014),
https://doi.org/10.1101/059642 Nature Genetics
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« Basic idea: a sequence is indirectly generated by a Markov
chain

— The Markov chain has some hidden (unknown) state for each
position in the sequence

— We observe the character generated at each position according to a
multinomial distribution that depends on the state
« The sequence is generated by two random processes:
1) generate the hidden Markov chain

2) generate the symbol in each state of the chain using a multinomial
model
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the probability of switching between hidden states
in the Markov chain

— Tkl = P(Tti =1 | -1 — k) for i=2,...,n
— To=P(m1=k)
the probability of emitting a certain symbol in a
given state &
— Eub)=P(si=b |m=k)
— conditional on current state, s; is independent of the previous symbol s; 4
 The joint probability of s=(s,, s,, .., s,,) and n=(n, ®,, ..., ,) 1s:

n—1

P(S:ﬂ_) — TO,’?TlE’le (31) H TW'i:W-i+1E7Ti+1(Si+1)

=1
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Simple running example: occasionally
dishonest casino

e (Casino uses a fair dice most of

the time, but switches to the 0.0
loaded dice once in a while | O " . ”10 0g
* (Can we detect which dice is in 21 116 0.05 22 110
use at any given time, just by 1118 1110
observing the sequence of 416 41110
rolls? 5106 M—— 5 110
516 | 01 | 6 112
Fair Loaded
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Sequential view

Observed sequence of dice rolls:

O—O—O—O®O—©®D—

LOClde EEn

Fair

Hidden path: the sequence of which dice being used:

(D—E)—O—LO—=O—B—
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Viterbi algorithm = finding the most
probable state sequence
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Decoding: finding the most probable path

Observed sequence of die rolls:

- Decoding: Finding the most @ @ O—o—(o—@—

probable state sequence
(path 7*) that could have >< >< % % >—<
generated the observed rolls =

Hidden path: the sequence of which die being used:

O—EO—O—0O—0—®

 The number of possible
paths grows exponentially, so

we need efficient algorithms ™ = arg max P(s, )
mell

n—1

P(Sa ﬂ-) — TU,’?TlEﬂ'l (31) H Tﬂi,ﬂi+1Eﬂé+1(Si+1)
1—=1
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« Dynamic programming, based on tabulating

— probability V, (i) of the most probable hidden path (r,, ..., ) ending in state
m,=k associated with the prefix s,,...,s;

— pointers for traceback
— Formally:
V(i) = max p(my,..., 71,7 =k, 81,...,5;)

TlyeeeyTqi—1

« Table V of size mXxn
— m=number of hidden states

— n=length of the observed sequence
- V(ki)=V,(i)
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Updating the table: the information in each column is sufficient for
computing the next column:

Vii +1) = Ei(siy1) max Vie (1) T

— for prefix (s4, .., s;) find a state k that maximizes the combined probability of
* the best path to k, (m,, ..., k): probability V, (i)
« making a transition from k to 1: probability T,
« emission probability for base s, , in state 1

In the end, we get

P(s, ™) = mi?XVk(n)
Traceback recovers the best path 7* = argmax P(s, )

mell
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Viterbi at the casino

* Vloaded(s) iS the maXimum Observed sequence of die rolls:
of two probabilities: the @ @ @ @ ,@_,
most probable sequences @
such that either Loade

— 4’th throw used a loaded
dice and it is continued to be
used for 5t throw, or Falr

— The dice was switched from Hidden path: the sequence of which die being used:
fair to loaded after 4t throw
. e O—-O~0—-0-0-0
« Simple recurrence gives
the result:

Vioaded (4) : Tioaded.loaded
Vioaded (9) = Eloaded (0) - ma |
toad d( ) load d( ) X{ I/fair (4) ) Tfairjloa.ded
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« Multiplying small probabilities may easily cause
numerical underflow

* In computer implementation, it is better to use log-
probabilities instead

« The updates remain similar
— multiplication changed to summation
— log max, x, = max, log x,, for non-negative x,

* Reusing the notation for V, E, and T for the logarithmic
guantities

V,(+1) = Ei(5,) + max(V; () + T
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Viterbi in R

V/(i+1)= Ei(s) + max(¥; () + T,

Aalto University
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viterbi <- function(s, T, E) {

Tog.E <- Tog2(E)
T1og.T <- Tog2(T)

# Pre-allocate V and TB:
V <- matrix(rep(0, nrow(T)*Tength(s)), nrow=nrow(T))
TB <- matrix(rep(0, nrow(T)*length(s)), nrow=nrow(T))

# Initialize the first column of V:
V[,1] <- log2(1/nrow(Vv)) + t(log.E[s[1],]1)

# Calculate the Vv table
for (i in 2:1length(s)) {
for (1 in l:nrow(V)) {
v[1, 1] <- max(log.T[,1] + V[, i-11)
TB[1, i] <- which.max(log.T[,1] + V[,1-1])
v[1, 1] <- v[1, i] + Tlog.E[s[i], 1]
}
}
Tog.prob <- max(V[,ncol(V)])
k <- which.max(V[,ncol(V)])

# Traceback
path <- rep(NA, length(s))
for (i in seq(length(s),2)) {
path[i] <- k
k <- TB[k, 1]
}
path[1] <- k

res <- 1list()
res$log.prob <- log.prob
res$path <- path

resiv <- v

return(res)




0.95

09
: : : 1:1/6 1110
Viterbi at the Casino 16 | 995 5 19
3106 31110
416 4110
51/6 M— 5 110
616 | O |6 112
Fair Loadead
= log2(E)
[,1] [,2]

[1,] -2.584963 -3.321928
[2,] -2.584963 -3.321928
[3,] -2.584963 -3.321928
[4,] -2.584963 -3.321928
[5,] -2.584963 -3,321928
[6,] -2.584963 -1. 000000
= log2(T)

= 5
[1] 3221236666
=
= viterbi.resjv
[.1] [.2]
[1,] -3.584963 -6.243926

=
= viterbi.resipath
1] 1111112222

[,1] [.2]

[1,] -0.07400058 -4.3219281
[2,] -32.32192809 -0.1520031

[.3] [.4] [.5] [.6] [.7] [.8] [.9] [,10]
-8.902889 -11.56185 -14.22081 -16.87978 -19.53874 -22.19770 -24.85667 -27.51563

[2,] -4.321928 -7.795859 -11.269790 -14.74372 -18.21765 -21.69158 -22.20171 -23.35371 -24.50571 -25.65772

Vi+1) = Ei(s,) + max(%, () + T,
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V,..(1) = E...(3) + log,(1/2) = —2.585 — 1 = —3.585

0.95

0.05

—M
—

s

_._
[

Fair Loaded

= 5
[1] 32212 3666E6

5

> viterbi.resgv

= viterbi.res$path
[1]1111112222

= 10@2(E}
[,1]

[1,] -2.584963 -3.
[2,] -2.584963 -3.
[3,] -2.584963 -3.
[4,] -2.584963 -3.
[5,] -2.584963 -3.
[6,] -2.584963 -1.

= 1ug2(T}

[,1]
[1,] -0.07400058
[2,] -3.32192809

[,2]
321928
321928
321928
321928
321928
000000

[,2]
-4.3219281
-0.1520031

3 [,2] [,3] [,4] [,5] [,6] 7] [,8] [,9]
[1,] «3.584963/-6.243926 -B8.902889 -11.56185 -14.22081 -16.87978 -19.53874 -22.19770 -24.85667 -
[2,] —?.?95859 -11.269790 -14.74372 -1B8.21765 -21.69158 -22.20171 -23,.35371 -24.50571 -25.6577
-3

[,10]
27.51563

Vi +1)= Ei(s.)+ max(, () + T,)
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Vhﬁr(3)'+ T}ahﬂoaded
\Goaded(3) +'rnoadedJoaded

~8.9029 — 43219 _
~11.2698 — 0.152

Vioaded (4‘) — Eloaded(l) + max

— 33219 + max{ —14.7437

0.95

0.0
—®
1

k]

[

_._
[

Fair

= -|Clg2 (ED

[,1] [,2]
. 5384963 -3. 321928
. 584963 -3.321928
. 584963 -3.321928
. 384963 -3.321928
. 5384963 -3. 321928
. 584963 -1.000000

[,1] [,2]
[1,] -0.07400058 -4.3219281

=5
[1] 3221236666

= viterbi.resgv

[.1] [.2] [.3] [.4] [.5] [.6] [.7] [.8] [.9] [,10]
[1,] -3.584963 -6.243926 -8.902889 -27.51563
-25.6577

[2,] -4.321928 -7.795859 -11.269790

= viterbi.res$path
1] 1111112222

-11.56185_-14.22081 -16.87978 -19.53874 -22.19770 -24.85667
15.21?65 -21.69158 -22.20171 -23.35371 -24.50571

[2,] -3.32192809 -0.1520031

Vi +1)= Ei(s.)+ max(, () + T,)

A
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Viterbi at the casino

 Viterbi estimates remarkably well the correct dice

Rolls
Die
Viterbi

315116246446644245321131631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls
Die
Viterbi

651166453132651245636664631636663162326455235266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFEF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFEFF

REolls
Die
Viterbi

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFPFFEFL

Rolls
Die
Viterbi

366163666466232534413661661163252562462255265252266435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEE
LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEE

Rolls
Die
Viterbi

233121625364414432335163243623665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFEF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
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Parameter estimation for HMMs
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So far we have assumed that we
have knowledge of the transition
probabilities and emission
probabilities

How to obtain these values if we
only know

— the emitted sequence and HMM
structure (here: Fair, Loaded)?

— possibly the hidden state sequence
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Parameter estimation when the state
sequence is known

« Assume we have
— aset of training sequences s,..., st where s = (s;0,...,5,;1,®), e.g.
« Sequences of rolls of dice: s =(1,3,4,3,...),s®=(5,6,4,3,...)

* Nucleotide sequences s =AGTCGT... s® = CTGTAT...,

— the set of states and corresponding state sequences of HMM
« Which dice is being used: y® = FFFF..., y® = LLFF...
* ORF/ non-ORF: yM = NNNYYY..., y® = NNNNNN

* The goal is to optimize HMM parameters
— Transition probabilities T,
— Emission probabilities E,(s,)
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Parameter estimation when the state
sequence is known

 Transition probabilities

— we examine the given state sequences y(,...,y(m

— denote by t,, the number of times transition k=»1 was taken among
the sequences

. . e t 1

— Our estimate for the transition probability is 7T},; = kit F

. e > (e +1)

« Emission probabilities

— we examine the emitted sequences s, ..., s(™ and the state

sequences yD, ..., y™ together
— denote by e, (b) the number of times b was emitted while in state k
— The estimate for emission probability is er(b) + 1

T (e () + 1)
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« Pseudo-counts are typically used to make the models
less prone to over-fitting due to insufficient data

« In HMMSs, the pseudo-counts also correct a problem

arising if some state Kk is not visited in the training data:
* need to allocate some probability to so far unseen events

 In general, the pseudo-counts can be any positive real

numbers, however
* too large numbers will override the training data

 too small numbers will cause the parameters to over-fit the training
data (leads to poorer performance on new, yet unseen data)
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« Depending on the application, sometimes we may assume
we know the state sequence
— In many cases we have a training set that contains the states e.g.
known coding regions in genes, known CG rich regions, ...
 In other applications, such an assumption is not valid
— which dice is used by the dishonest casino

— data from newly sequenced organisms where no annotation has
been done.
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« Assume we have

— a set of training sequences s, ..., sM and the
— set of states of the HMM

 The goal is to optimize HMM parameters
Tkl
E.(s)
choose the HMMs parameters so that the likelihood of
the training data iIs maximized

 In the following, we present a training algorithm that uses as
a subroutine the Viterbi algorithm to find the most probable
path
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the HMM parameters in some way, e.g. setting
i. E.(s) =1/|Z| uniformly, where X is the alphabet of symbols to emit

ii. T, = 1/N(k) uniformly, where N(k) is the number states that can
follow state k

« Alternatively, one can use a "best guess”

— e.g. in the genome segmentation example, compute transition
probabilities from dinucleotide frequencies

A9 Aalto University
[ |



11.

111.

1v.

the following, until parameters do not change:

For each sequence s, using Viterbi algorithm, find the most
probable state sequence ™'®, given the current HMM
parameters 0=(TE)

Count how many times each transition k=»1 was taken in the
optimal paths w®,...m"(™) and denote that number by t,,

Set the new transition probabilities as t + 1

S YRCTESY
Count how many times each symbol b was emitted in each state
k, and denote that number by e, (b)

Set the new emission probabilities as ex (D) + 1
P S e+ 1)

A9 Aalto University
[ |



« The above algorithm works in : it assumes all
training data is already available

« The training can also work in , Where the
model is re-estimated when new data arrives

 Also, the training can work just as well on a single long
sequence as on a set of short sequences

« The casino example highlights this training mode
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Viterbi training at the casino

* Let us enter the occasionally dishonest casino, with our
HMM, with initial guesses about the underlying model:

AN N | N S A IS I N

_ 167 .167 .167 .167 .167 .167
__10 90 -.10 10 .10 .10 .10 50

« We observe a sequence of rolls: 3,4,6,4,6,6,2,6,3,4,1,5,3
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« We observe a sequence of rolls:
3,4,6,4,6,6,2,6,3,4,1,5,3

« With Viterbi estimation with the current model, we get:
LLLLLLLLFFFFF

« Count transitions t and emissions e, add pseudo-counts

Fair 4+1 0+1 Fair 1+1 o+1 2+1 1+1 1+1 0+1
Loaded 1+1 7+1 Loaded O0+1 1+1 1+1 2+1 0+1 4+1

A9 Aalto University
[ |



Viterbi training at the casino

« Normalize to obtain estimated transition and emission

probabilites - tr + 1 B () — er(b) +1
kl — k =
St + 1) 0) = S e T 1)
Fair 4+1 0+1 Fair 1+1 o+1 2+1 1+1 1+1 0+1

Loaded 1+1 7+1 Loaded O0+1 1+1 1+1 2+1 0+1 4+1

_ ------ﬂ
_ 5 3 - 07 14 14 21 07 .36

« We observe some more rolls: 5,3,4,2,1,6,1,6,6,2,6,5
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 All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1,
6,1,6,6,2,6,5

 Viterbi estimation with the new model gives:
LLLLLLLLFFFFFFFFFFLLLLLLL

 Count transitions and emissions in all rolls seen so farr,
add pseudo-counts

Fair o+1 1+1 Fair 2+1 1+1 3+1 2+1 2+1 0+1
Loaded 1+1 13+1 Loaded 1+1 2+1 1+1 2+1 1+1 8+1
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Viterbi training at the casino

« Normalize to obtain estimated transition and emission

probabilities
Fair 9+1 1+1 Fair 2+1 1+1 3+1 241 241 0+1
Loaded 1+1 13+1 Loaded 1+1 2+1 1+1 2+1 1+1 8+1

_ ------ﬂ

_ 125 875 - 095 .14 095 .14  .095 .43

« (Casino closes, so we do not get more rolls, but we can
continue training with the current data
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Viterbi training at the casino

 All rolls seen so far: 3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1,
6,1,6,6,2,6,5

 Viterbi estimation with the new model gives:
LLLLLLLLFFFFFFFFFFLLLLLLL

« This turns out to be the same predicted sequence as in
previous step, so our model stays the same

_ ------ﬂ
_ - 187 125 187 .187 .063
_ 125 875 - 095 14 095 .14  .095 .43

« In general, with a longer sequence, more iterations could be
needed for convergence
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Viterbi training algorithm will
eventually converge (and stop)
— Each update of the parameters increases the probability of the
most probable paths,
* 50 the algorithm will never revisit a previous solution

— There is only finite (but large) number of Viterbi paths to
consider,

« so we will eventually run out of solutions that we have not
considered
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Note: Accuracy of estimation depends on the
amount of training data

Fair .95 .05
Loaded .10 .90

rolls
Far | 19 19 23 .08 23 .08
_'29 e -.07 10 .10 17 05 52

30000 Fair Loaded 30000 1 ) 3 4 5

rolls rolls

_ 93 07 Far | 17 17 a7 a7 a7 a7
_ I a8 - 10 11 10 A1 10 48
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