Aalto University
School of Science

CS-E5865 Computational genomics

Autumn 2019, Lecture 5: HMM algorithms, Pair HMM \& Profile HMM

Lecturer: Pekka Marttinen

Assistants: Alejandro Ponce de León, Zeinab
Yousefi, Onur Poyraz

HMM problems and algorithms

1. Find the most likely hidden state sequence $=>$ Viterbi algorithm
2. Estimate the emission and transition probabilities of the HMM => Viterbi training
3. Determine the probability of a sequence s given the HMM model => Forward algorithm
4. Determine the probability of being in state k at position i => Posterior decoding

Forward, Backward \& Posterior decoding

The Forward Algorithm

- Task: calculate the probability $\mathrm{P}(\mathrm{s})$ of sequence s, given by our HMM
- Sum over all possible hidden state paths (set П) that could have been used to generate s:

$$
P(s)=\sum_{\pi \in \Pi} P(s, \pi)=\sum_{\pi \in \Pi} P(s \mid \pi) P(\pi)
$$

- Exponential sum, cannot enumerate over all state paths!
- Again, we will define a dynamic programming problem, and fill a table of forward probabilities

$$
\mathrm{F}_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right)
$$

- Probability of emitting the prefix $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}}$ and ending up in state k

The Forward Algorithm - derivation

$$
\begin{aligned}
\mathrm{F}_{\mathrm{k}}(\mathrm{i}) & =\mathrm{P}\left(\mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{\mathrm{l}} \mathrm{P}\left(\mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{i}}, \pi_{\mathrm{i}-1}=\mathrm{l}, \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{\mathrm{l}} \mathrm{P}\left(\mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{i}-1}, \pi_{\mathrm{i}-1}=\mathrm{l}\right) \mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \pi_{\mathrm{i}-1}=\mathrm{l}\right) \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{\mathrm{l}} \mathrm{P}\left(\mathrm{~s}_{\left.1 \ldots \mathrm{~s}_{\mathrm{i}-1}, \pi_{\mathrm{i}-1}=1\right) \mathrm{T}_{\mathrm{lk}} \mathrm{E}_{\mathrm{k}}\left(\mathrm{~s}_{\mathrm{i}}\right)}\right. \\
& =\mathrm{E}_{\mathrm{k}}\left(\mathrm{~s}_{\mathrm{i}}\right) \Sigma_{\mathrm{l}} \mathrm{~F}_{\mathrm{l}}(\mathrm{i}-\mathbb{1}) \mathrm{T}_{\mathrm{lk}}
\end{aligned}
$$

- Sum over all possibilities of emitting $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}-1}$ ending up in state l , and then making a transition from l to k , and emitting s_{i}

The Forward Algorithm

- $\mathrm{F}_{\mathrm{k}}(\mathrm{i})=\mathrm{E}_{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right) \Sigma_{\mathrm{l}} \mathrm{F}_{\mathrm{l}}(\mathrm{i}-1) \mathrm{T}_{\mathrm{lk}}$
- Dynamic programming formulation:
- table F of size $\mathrm{m} \times \mathrm{n}$ where:
- $m=n u m$ of hidden states
- $\mathrm{n}=$ length of the observed sequence

Initialization: (first column)

$F(k, 1)=1 / m E_{k}\left(s_{1}\right)$, for all $k>0$

Iteration

$F(k, i)=E_{k}\left(s_{i}\right) \Sigma_{l} F(1, i-1) T_{l k}, f o r$ all k , and for all $\mathrm{i}=2, \ldots, \mathrm{n}$
Termination: (sum all the values in the last column)
$\mathrm{P}(\mathrm{s})=\Sigma_{\mathrm{k}} \mathrm{F}(\mathrm{k}, \mathrm{n})$

- Difference to Viterbi: replace max with sum

Forward at the Casino

```
forward <- function(s, T, E) {
    n.states <- ncol(E)
    F <- matrix(rep(0, n.states * length(s)), nrow = n.states)
    F[,1] <- 1 / n.states * E[s[1],]
    for (i in 2:1ength(s)) {
        for (1 in 1:n.states) {
            F[1,i] <- sum(F[,i-1] * T[,1])
            F[1,i] <- F[1,i] * E[s[i],1]
        }
    }
    prob <- sum(F[,length(s)])
    res <- list()
    res$fprob <- prob
    res$F <- F
    return(res)
```


$>\mathrm{T}$			
	$[, 1]$	$[, 2]$	
$[1]$,	0.7	0.3	
$[2]$,	0.3	0.7	
$>\mathrm{E}$			
		$[, 1]$	$[, 2]$
$[1]$,	0.1666667	0.1	
$[2]$,	0.1666667	0.1	
$[3]$,	0.1666667	0.1	
$[4]$,	0.1666667	0.1	
$[5]$,	0.1666667	0.1	
$[6]$,	0.1666667	0.5	

$\mathrm{F}(\mathrm{k}, \mathrm{i})=\mathrm{E}_{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right) \Sigma_{\mathrm{l}} \mathrm{F}(\mathrm{l}, \mathrm{i}-1) \mathrm{T}_{\mathrm{lk}}$

Forward at the Casino

- Initialization

$$
\begin{aligned}
& \mathrm{F}(1,1)=\mathrm{E}_{\text {Fair }}\left(\mathrm{s}_{1}\right) 0.5=0.1667 * 0.5=0.08335 \\
& \mathrm{~F}(2,1)=\mathrm{E}_{\text {Loaded }}\left(\mathrm{s}_{1}\right) 0.5=0.1 * 0.5=0.0500
\end{aligned}
$$

$$
\mathrm{F}(\mathrm{k}, \mathrm{i})=\mathrm{E}_{\mathrm{k}}\left(\mathrm{~s}_{\mathrm{i}}\right) \Sigma_{\mathrm{l}} \mathrm{~F}(\mathrm{l}, \mathrm{i}-1) \mathrm{T}_{\mathrm{lk}}
$$

Forward at the Casino

- Compute F(1,2)

- For clarity, we'll use informal notation $F(f a i r, 2)$ for $F(1,2)$
- $\mathrm{F}($ fair, 2$)=\mathrm{P}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \pi_{2}=\right.$ fair $)$
$=\mathrm{E}_{\text {fair }}\left(\mathrm{s}_{2}\right) \Sigma_{1} \mathrm{~F}(1,1) \mathrm{T}_{1, \text { fair }}$

$$
\begin{aligned}
& =0.1667\left[\mathrm{~F}\left(\text { fair,1) } \mathrm{T}_{\text {fair,fair }}+\mathrm{F}(\text { loaded,1 }) \mathrm{T}_{\text {loaded,fair }}\right]\right. \\
& =0.1667[0,0833 * 0,7+0,05 * 0,3]=0.0122
\end{aligned}
$$

And so on, until the table is filled..

```
5 [1] 3 2 211223666 6
    res$F
> forward.res$fprob
[1] 1.03473e-07
```


$\begin{array}{ccccccc}{[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} & {[, 5]} & {[, 7]} & {[, 8]}\end{array}$

$[2] 0.050000000 .006000000 .00078666670 .00010684441 .469985 \mathrm{e}-,05 \quad 2.031676 \mathrm{e}-061.406236 \mathrm{e}-065.885209 \mathrm{e}-072.277686 \mathrm{e}-078.667463 \mathrm{e}-08$

Forward at the Casino

- The probability of the full sequence s:

$$
P(s)=F(f a i r, 10)+F(\text { loaded }, 10)
$$

- Note: working with logarithms is not as straightforward as with Viterbi (logarithm of a sum does not simplify).
- For an algorithm that deals with this issue, see e.g., Bishop: Pattern Recognition and Machine Learning, Ch. 13.2 (not required on this course).

```
```

5

```
```

```
5
```

```
> forward.res$fprob
```

> forward.res\$fprob
[1] 1.03473e-07
[1] 1.03473e-07
F}(\textrm{k},\textrm{i})=\mp@subsup{\textrm{E}}{\textrm{k}}{}(\mp@subsup{\textrm{s}}{\textrm{i}}{})\mp@subsup{\Sigma}{\textrm{l}}{\textrm{l}}\textrm{F}(\textrm{l},\textrm{i}-1)\mp@subsup{\textrm{T}}{\textrm{lk}}{

```
F}(\textrm{k},\textrm{i})=\mp@subsup{\textrm{E}}{\textrm{k}}{}(\mp@subsup{\textrm{s}}{\textrm{i}}{})\mp@subsup{\Sigma}{\textrm{l}}{\textrm{l}}\textrm{F}(\textrm{l},\textrm{i}-1)\mp@subsup{\textrm{T}}{\textrm{lk}}{
```


$P \mathrm{~T}$			
	$[, 1]$	$[, 2]$	
$[1]$,	0.7	0.3	
$[2]$,	0.3	0.7	
E		$[, 1]$	$[, 2]$
	$[1]$,	0.1666667	0.1
$[2]$,	0.1666667	0.1	
$[3]$,	0.166667	0.1	
$[4]$,	0.166667	0.1	
$[5]$,	0.1666667	0.1	
$[6]$,	0.1666667	0.5	

$[1] 0.083333330 .012222220 .00172592590 .00024069143 .342288 \mathrm{e}-,054.634329 \mathrm{e}-06 \quad 6.422555 \mathrm{e}-071.452416 \mathrm{e}-074.637090 \mathrm{e}-081.679837 \mathrm{e}-08 \mathrm{D}$
$[2] 0.050000000 .006000000 .00078666670 .00010684441 .469985 \mathrm{e}-,05 \quad 2.031676 \mathrm{e}-061.406236 \mathrm{e}-06 \quad 5.885209 \mathrm{e}-07 \quad 2.277686 \mathrm{e}-078.667463 \mathrm{e}-08 \mathrm{l}$

Backward Algorithm - motivation

- Posterior decoding problem: We want to compute the probability of state k for position i given sequence s: $\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{s}\right)$
- e.g. "During i'th roll Casino was using the loaded dice", "Nucleotide s_{i} belongs to an ORF"
- This is different from computing the most likely path $\pi_{1} \ldots \pi_{\mathrm{n}}$ by Viterbi
- We compute the result by splitting the sequence into two parts and computing the probabilities of prefixes and suffixes of s, such that the hidden state at position i is $\mathrm{k}: \quad \mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \mathrm{s}\right)=\mathrm{P}\left(\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}, \mathrm{s}_{\mathrm{i}+1} \ldots \mathrm{~s}_{\mathrm{n}}\right)$

$$
\begin{aligned}
&=P\left(s_{1} \ldots s_{i}, \pi_{\mathrm{i}}=\mathrm{k}\right) \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+1} \ldots \mathrm{~s}_{\mathrm{n}} \mid \mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right) \\
&= \mathrm{P}\left(\mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right) \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+1} \ldots \mathrm{~s}_{\mathrm{n}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& \text { Forward, } \mathrm{F}_{\mathrm{k}}(\mathrm{i}) \text { Backward, } \mathrm{B}_{\mathrm{k}}(\mathrm{i})
\end{aligned}
$$

- Then, $\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{s}\right)=\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \mathrm{s}\right) / \mathrm{P}(\mathrm{s})$

The Backward Algorithm - derivation

Define the backward probability:

$$
\begin{aligned}
\mathrm{B}_{\mathrm{k}}(\mathrm{i}) & =\mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+1} \ldots \mathrm{~s}_{\mathrm{n}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{1} \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+1}, \mathrm{~s}_{\mathrm{i}+2}, \ldots, \mathrm{~s}_{\mathrm{n}}, \pi_{\mathrm{i}+1}=\mathrm{l} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{1} \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+1}, \mathrm{~s}_{\mathrm{i}+2}, \ldots, \mathrm{~s}_{\mathrm{n}} \mid \pi_{\mathrm{i}+1}=\mathrm{l}\right) \mathrm{P}\left(\pi_{\mathrm{i}+1}=1 \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{1} \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+2}, \ldots, \mathrm{~s}_{\mathrm{n}} \mid \pi_{\mathrm{i}+1}=1\right) \mathrm{P}\left(\mathrm{~s}_{\mathrm{i}+1} \mid \pi_{\mathrm{i}+1}=\mathrm{l}\right) \mathrm{P}\left(\pi_{\mathrm{i}+1}=\mathrm{l} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{1} \mathrm{E}_{\mathrm{l}}\left(\mathrm{~s}_{\mathrm{i}+1}\right) \mathrm{T}_{\mathrm{kl}} \mathrm{~B}_{1}(\mathrm{i}+1)
\end{aligned}
$$

The Backward Algorithm

We can compute $\mathrm{B}_{\mathrm{k}}(\mathrm{i})$ for all k , i, using dynamic programming

- Fill in a table B of size $m \mathrm{X} n$ where:
- m=nr of hidden states
- $n=l e n g t h$ of the observed sequence

Initialization:
$B(k, n)=1$, for all k

Iteration: (backward from position n to 1)
$B(k, i)=\sum_{l} E_{l}\left(s_{i+1}\right) T_{k l} B(l, i+1)$

Backward at the casino

$$
\mathrm{B}(\mathrm{k}, \mathrm{i})=\sum_{1} \mathrm{E}_{1}\left(\mathrm{~s}_{\mathrm{i}+1}\right) \mathrm{T}_{\mathrm{k} 1} \mathrm{~B}(\mathrm{l}, \mathrm{i}+1)
$$

```
backward <- function(s, T, E) {
    n.states <- ncol(E)
    B <- matrix(rep(0, n.states * length(s)), nrow = n.states)
    B[, length(s)] <- 1
    for (i in seq(length(s)-1,1)) {
                for (k in 1:n.states) {
                    B[k,i] <- sum(E[s[i+1],] * B[,i+1] * T[k,])
        }
    }
    res <- list()
    res$B <- B
}
```


$>\mathrm{T}$			
	$[, 1]$	$[, 2]$	
$[1]$,	0.7	0.3	
$[2]$,	0.3	0.7	
$>\mathrm{E}$			
		$[, 1]$	$[, 2]$
$[1]$,	0.1666667	0.1	
$[2]$,	0.1666667	0.1	
$[3]$,	0.1666667	0.1	
$[4]$,	0.1666667	0.1	
$[5]$,	0.1666667	0.1	
$[6]$,	0.1666667	0.5	

$$
\mathrm{B}(\mathrm{k}, \mathrm{i})=\sum_{1} \mathrm{E}_{1}\left(\mathrm{~s}_{\mathrm{i}+1}\right) \mathrm{T}_{\mathrm{kl}} \mathrm{~B}(\mathrm{l}, \mathrm{i}+1)
$$

Backward at the casino

- Initialization
$\mathrm{B}(1, \mathrm{n})=\mathrm{F}($ fair, n$)=1$
$B(2, n)=F($ loaded, n$)=1$

$>\mathrm{T}$			
	$[, 1]$	$[, 2]$	
$[1]$,	0.7	0.3	
$[2]$,	0.3	0.7	
$>\mathrm{E}$			
	$[, 1]$	$[, 2]$	
$[1]$,	0.1666667	0.1	
$[2]$,	0.1666667	0.1	
$[3]$,	0.1666667	0.1	
$[4]$,	0.1666667	0.1	
$[5]$,	0.1666667	0.1	
$[6]$,	0.1666667	0.5	

[1] 32221236666
> backward.res\$B

$[1] 8.623071 \mathrm{e}-,076.208959 \mathrm{e}-064.450478 \mathrm{e}-050.00031479000 .0021384030 .012656790 .033629630 .091111110 .2666667$
$[2] 6.322813 \mathrm{e}-,074.597620 \mathrm{e}-063.389115 \mathrm{e}-05 \quad 0.00025930930 .002176988 \quad 0.022059260 .058222220 .153333330 .4000000$

$$
\mathrm{B}(\mathrm{k}, \mathrm{i})=\sum_{1} \mathrm{E}_{1}\left(\mathrm{~s}_{\mathrm{i}+1}\right) \mathrm{T}_{\mathrm{k} 1} \mathrm{~B}(\mathrm{l}, \mathrm{i}+1)
$$

Backward at the casino

- Recursion, for example:
$\mathrm{B}($ fair, 7$)=\mathrm{P}\left(\mathrm{s}_{8}, \ldots, \mathrm{~s}_{10} \mid \pi_{7}=\right.$ fair $)$
$=\mathrm{T}_{\text {fair,loaded }} \mathrm{E}_{\text {loaded }}\left(\mathrm{s}_{8}\right) \mathrm{B}$ (loaded, 8) $+\mathrm{T}_{\text {fair,fair }} \mathrm{E}_{\text {fair }}\left(\mathrm{s}_{8}\right) \mathrm{B}($ fair,8)
$=\mathrm{T}_{\text {fair,loaded }} \mathrm{E}_{\text {loaded }}(6) \mathrm{B}($ loaded, 8$)+\mathrm{T}_{\text {fair,fair }} \mathrm{E}_{\text {fair }}(6) \mathrm{B}($ fair,8)
$=0.3 * 0.5$ * $0.1533+0.7^{*} 0.1667{ }^{*} 0.0911$
$=0.0336$

$>\mathrm{T}$			
	$[, 1]$	$[, 2]$	
$[1]$,	0.7	0.3	
$[2]$,	0.3	0.7	
$>\mathrm{E}$			
		$[, 1]$	$[, 2]$
$[1]$,	0.1666667	0.1	
$[2]$,	0.1666667	0.1	
$[3]$,	0.1666667	0.1	
$[4]$,	0.1666667	0.1	
$[5]$,	0.1666667	0.1	
$[6]$,	0.1666667	0.5	

 [1] 322211236666
 > backward.res\$B
 \(\left[\begin{array}{cccccccc}{[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} & {[, 6]} & {[, 7]} & {[, 8]} & {[, 9]}\end{array}\right.\)
 $\left[\begin{array}{llllllllllllllllllllllllll}{[1,]} & 8.623071 \mathrm{e}-07 & 6.208959 \mathrm{e}-06 & 4.450478 \mathrm{e}-05 & 0.0003147900 & 0.002138403 & 0.0126567 & 0.03362963 & 0.09111111 & 0.2666667 & 1 \\ {[2,]} & 6.322813 \mathrm{e}-07 & 4.597620 \mathrm{e}-06 & 3.389115 \mathrm{e}-05 & 0.0002593093 & 0.002176988 & 0.02205926 & 0.05822222 & 0.15333333 & 0.4000000 & 1\end{array}\right.$

Posterior Decoding

We can now calculate

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{s}\right)=\frac{\mathrm{F}_{\mathrm{k}}(\mathrm{i}) \mathrm{B}_{\mathrm{k}}(\mathrm{i})}{\mathrm{P}(\mathrm{~s})}
$$

$$
\begin{aligned}
& \mathrm{P}\left(\pi_{i}=k \mid s\right)= \\
& \mathrm{P}\left(\pi_{i}=k, s\right) / P(s)= \\
& P\left(s_{1}, \ldots, s_{i}, \pi_{i}=k, s_{i+1}, \ldots s_{n}\right) / P(s)= \\
& P\left(s_{1}, \ldots, s_{i}, \pi_{i}=k\right) P\left(s_{i+1}, \ldots s_{n} \mid \pi_{i}=k\right) / P(s)= \\
& F_{k}(i) B_{k}(i) / P(s)
\end{aligned}
$$

Posterior Decoding now gives the most likely state at position i of sequence:

$$
\pi_{\mathrm{i}}^{*}=\operatorname{argmax}_{\mathrm{k}} \mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{s}\right)
$$

Decoding problem

- We have now 2 methods for decoding:
- Posterior decoding
- Viterbi algorithm
- Which is most appropriate?

Posterior Decoding

- For each state
- Posterior Decoding gives us a probability distribution for the state at each position
- This is sometimes more informative than Viterbi path π^{*}
- Posterior decoding takes into account all possible paths when determining the most likely state
- Viterbi method only takes into account one path, which may end up representing a minimal fraction of the total probability

Posterior Decoding

- $\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{s}\right)=\Sigma_{\pi} \mathrm{P}(\pi \mid \mathrm{s}) \mathbf{1}\left(\pi_{\mathrm{i}}=k\right)$

$$
=\Sigma_{\{\pi: \pi[i]=k\}} P(\pi \mid s)
$$

$\mathbf{1}(\psi)=1$, if ψ is true 0 , otherwise

HMMs for sequence alignment

Hidden Markov Models for Sequence Alignment

- So far, we have used HMMs to detect certain regions from a single sequence
- HMMs can also be used for sequence alignment tasks
- Pair-HMM can be used to find high-scoring alignments between two sequences, allowing gaps
- Profile-HMM can be used to model a multiple alignment of a set of sequences

Pair HMM

- Given 2 sequences X and Y, we want to identify their alignment
- Pair HMM consists of
- Begin and End state which do not emit symbols
- Three normal states
- M (match)
- X (gap in Y)

- Y (gap in X)
X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

Pair HMM - Transitions

- Transition from M to X (resp. Y) opens a gap in Y (resp. X),
- Transition back to M closes the gap
- $\delta \sim$ open gap probability
$-\varepsilon \sim$ extend gap probability

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
Y-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

Pair HMM - Emissions

- State M: emit (b,b') with probability $\mathrm{E}_{\mathrm{M}}(\mathrm{b}, \mathrm{b})$
- State X: emit (b,-) with probability $\mathrm{E}_{\mathrm{x}}(\mathrm{b},-)$
- State Y: emit (-,b’) with probability $\mathrm{E}_{\mathrm{Y}}\left(-, \mathrm{b}^{\prime}\right)$

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
Y-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

Pair HMMs - Finding Optimal Alignment

- A state sequence π from begin to end state that emits x and y gives an alignment for them
- Transition and emission probabilities give the probability of the alignment
- The best alignment of two sequences corresponds to the most probable state sequence

$$
\pi^{*}=\operatorname{argmax}_{\pi} \mathrm{P}(\mathrm{x}, \mathrm{y}, \pi)
$$

- Can be computed by the Viterbi algorithm
X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

Viterbi for pair-HMMs

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{M}}(\mathrm{i}, \mathrm{j})=\mathrm{E}_{\mathrm{M}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \max \left\{\begin{array}{l}
(1-2 \delta) \mathrm{V}_{\mathrm{M}}(\mathrm{i}-1, \mathrm{j}-1) \\
(1-\varepsilon) \mathrm{V}_{\mathrm{X}}(\mathrm{i}-1, \mathrm{j}-1) \\
(1-\varepsilon) \mathrm{V}_{\mathrm{Y}}(\mathrm{i}-1, \mathrm{j}-1)
\end{array}\right. \\
& \mathrm{V}_{\mathrm{X}}(\mathrm{i}, \mathrm{j})=\mathrm{E}_{\mathrm{X}}\left(\mathrm{x}_{\mathrm{i}}\right) \max \left\{\begin{array}{l}
\delta \mathrm{V}_{\mathrm{M}}(\mathrm{i}-1, \mathrm{j}) \\
\varepsilon \mathrm{V}_{\mathrm{X}}(\mathrm{i}-1, \mathrm{j})
\end{array}\right. \\
& \varepsilon \\
& \mathrm{V}_{\mathrm{Y}}(\mathrm{i}, \mathrm{j})=\mathrm{E}_{\mathrm{Y}}\left(\mathrm{y}_{\mathrm{j}}\right) \max \left\{\begin{array}{l}
\delta \mathrm{V}_{\mathrm{M}}(\mathrm{i}, \mathrm{j}-1) \\
\varepsilon \mathrm{V}_{\mathrm{Y}}(\mathrm{i}, \mathrm{j}-1)
\end{array}\right.
\end{aligned}
$$

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

Full model

- The complete model should also contain the transitions between the begin, end and normal states

Pair-HMM vs. Needleman-Wunsch

- Similarities:
- HMM transition to a match state \sim NW diagonal move
- HMM tr. to Y state ~NW horizontal move
- HMM tr. to X state ~ NW vertical move
- HMM Emissions ~ NW substitutions
- Important difference:
- HMM transition and emission probabilities can be trained
- NW substitution scores fixed

Profile Hidden Markov Models

From Sequence to Structure to Function

- In functional genomics the goal is to annotate the genes by their function (e.g. catalysis of a biochemical reaction)
- In principle, possible functions of proteins are determined by their 3D structure
- 3D structure is in principle determined by the amino acid sequence
- Consequently, the amino sequence should determine the function

From Sequence to Structure to Function

- However, predicting the 3D structure of a protein (aka Protein folding problem) from the amino acid sequence is extremely difficult
- Not fully solved yet
- Also, predicting the function from the 3D structure is not easy
- Require molecular simulations run on supercomputers
- A shortcut is offered by Hidden Markov Models

Profile Hidden Markov Models

- Protein families: family
- Sets of related sequences and structures
- Diverged from each other in their primary sequence during evolution
- Some regions are more conserved than others
- Profile HMM is tailored to the
- by defining the HMM structure to match the family
- by training the parameters with the sequences of that family

Profile Hidden Markov Models - the approach

- We construct a HMM of a set of proteins that share a function or structural regions (called domains)
- This model can be used to give a probability for each new protein
 sequence to share that same function or domain
- The same sequence can be tested against a large set of HMM models
- high probability by a HMM indicates that our new sequence may share the domain or function modeled by that HMM

Example: zinc finger domain

- Typically it functions as interaction module that binds DNA, RNA, proteins, or other small, useful molecules
- Several variants exist, one of which is depicted above right
- Below right a protein with three zinc finger domains embedded

Example: zinc finger domain

- Part of the multiple alignment of proteins containing the zinc finger domain is depicted below
- The full alignment has 194 proteins
- A profile HMM can be trained to recognize new members of the family
- Does not require 3D structure
- PFAM database contains a large number of profile HMMs for different structural and functional domains or motifs

Structure of a Profile HMM

Match states

- Correspond to the columns of the multiple alignment
- Number of match states picked using expert knowledge e.g.
- average length of sequences in the alignment
- number of columns that contain at least 50\% non-gap symbols
- Initial emission probabilities can be computed from the multiple alignment:

- For each amino acid, count the times it appears in each column

Insertion and deletion states

- Insertion states allow the profile HMM to model symbols in the sequences that do not match the model
- aligning a symbol in sequence to a gap in the model
- Deletion states allow the profile HMM to model symbols deleted from the sequence
- aligning a gap in a sequence to a symbol in the model

Summary: Building Profile HMM topology

(a) Sequence Alignment


```
Seq 4
Seq 5
Seq }
Seq }
Seq2
Seq2
Seq}
Seq}
Seq3
Seq3
*
*
(b) Ungapped HMM


M Match states
(c) Profile-HMM


\section*{Aalto University}

School of Science```

