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HMM problems and algorithms

1. Find the most likely hidden state sequence => Viterbi 

algorithm ✔

2. Estimate the emission and transition probabilities of the 

HMM => Viterbi training ✔

3. Determine the probability of a sequence s given the 

HMM model => Forward algorithm

4. Determine the probability of being in state k at position i
=> Posterior decoding
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Forward, Backward & Posterior decoding

3



The Forward Algorithm

• Task: calculate the probability P(s) of sequence s, given 
by our HMM

• Sum over all possible hidden state paths (set ) that 
could have been used to generate s:

𝑃 𝑠 = ෍

𝜋∈Π

𝑃 𝑠, 𝜋 = ෍

𝜋∈Π

𝑃 𝑠 𝜋 𝑃(𝜋)

• Exponential sum, cannot enumerate over all state paths!

• Again, we will define a dynamic programming problem, 
and fill a table of forward probabilities

Fk(i) = P(s1…si, i = k) 
• Probability of emitting the prefix s1,…,si and ending up in 

state k
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The Forward Algorithm – derivation

Fk(i) = P(s1…si, i = k) 

= l P(s1…si, i-1 = l ,i = k) 

= l P(s1…si-1, i-1 = l) P(i = k|i-1 = l) P(si|i = k)

= l P(s1…si-1, i-1 = l) Tlk Ek(si)

= Ek(si) l Fl(i – 1 ) Tlk

• Sum over all possibilities of emitting s1,…,si-1, ending up in state l, 
and then making a transition from l to k, and emitting si
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• Fk(i) = Ek(si) l Fl(i – 1 ) Tlk

• Dynamic programming 

formulation: 

– table F of size m X n where:

• m=num of hidden states

• n=length of the observed 

sequence

Initialization: (first column)

F(k,1) = 1/m Ek(s1), for all k > 0

Iteration

F(k,i) = Ek(si) l F(l,i – 1) Tlk, for 

all k, and for all i=2,...,n

Termination: (sum all the values 

in the last column)

P(s) = k F(k,n)

• Difference to Viterbi: replace 

max with sum

The Forward Algorithm



Forward at the Casino
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F(k,i) = Ek(si) l F(l,i – 1) Tlk



• Initialization

F(1,1)= EFair(s1) 0.5 = 0.1667 * 0.5 = 0.08335

F(2,1)= ELoaded(s1) 0.5 = 0.1 * 0.5 = 0.0500

Forward at the Casino

F(k,i) = Ek(si) l F(l,i – 1) Tlk



• Compute F(1,2)

• For clarity, we’ll use informal notation F(fair,2) for F(1,2)

• F(fair,2) = P(s1,s2, 2 = fair)

= Efair(s2) l F(l,1) Tl,fair

=0.1667 [F(fair,1) Tfair,fair + F(loaded,1)Tloaded,fair]

=0.1667[0,0833 * 0,7 + 0,05 * 0,3] = 0.0122

And so on, until the table is filled..

Forward at the Casino

F(k,i) = Ek(si) l F(l,i – 1) Tlk



• The probability of the full sequence s:

P(s) = F(fair,10)+F(loaded,10)

• Note: working with logarithms is not as 

straightforward as with Viterbi (logarithm of a sum 

does not simplify).

• For an algorithm that deals with this issue, see 

e.g., Bishop: Pattern Recognition and Machine 

Learning, Ch. 13.2 (not required on this course).

Forward at the Casino

F(k,i) = Ek(si) l F(l,i – 1) Tlk



Backward Algorithm - motivation

• Posterior decoding problem: We want to compute the probability of state k for 

position i given sequence s: P(i = k | s)

– e.g. “During i’th roll Casino was using the loaded dice”, “Nucleotide si belongs to an 

ORF”

– This is different from computing the most likely path  1 …n by Viterbi

• We compute the result by splitting the sequence into two parts and computing 

the probabilities of prefixes and suffixes of s, such that the hidden state at 

position i is k:     P(i = k, s) = P(s1…si, i = k, si+1…sn)

= P(s1…si, i = k) P(si+1…sn | s1…si, i = k) 

= P(s1…si, i = k)  P(si+1…sn | i = k)     

• Then, P(i = k | s) = P(i = k, s) / P(s)

Forward, Fk(i) Backward, Bk(i)
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The Backward Algorithm – derivation

Define the backward probability:

Bk(i) = P(si+1…sn | i = k)

= l P(si+1,si+2, …, sn, i+1=l | i = k)

= l P(si+1,si+2, …, sn | i+1 = l) P(i+1 = l | i = k)

= l P(si+2, …, sn | i+1 = l) P(si+1 | i+1 = l) P(i+1 = l | i = k)

= l El(si+1)Tkl Bl(i+1)
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The Backward Algorithm
We can compute Bk(i) for all k, i, using dynamic programming

• Fill in a table B of size m X n where:
– m=nr of hidden states

– n=length of the observed sequence

Initialization:

B(k,n) = 1, for all k

Iteration: (backward from position n to 1)

B(k,i) = l El(si+1) Tkl B(l,i+1)
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Backward at the casino
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B(k,i) = l El(si+1) Tkl B(l,i+1)



Backward at the casino
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B(k,i) = l El(si+1) Tkl B(l,i+1)

• Initialization

B(1,n)=F(fair,n)= 1

B(2,n)=F(loaded,n)=1



Backward at the casino
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B(k,i) = l El(si+1) Tkl B(l,i+1)

• Recursion, for example:

B(fair,7)= P(s8,...,s10| 7 = fair)

=Tfair,loadedEloaded(s8)B(loaded,8)+ Tfair,fairEfair(s8)B(fair,8)

=Tfair,loadedEloaded(6)B(loaded,8)+ Tfair,fairEfair(6)B(fair,8)

= 0.3 * 0.5 * 0.1533 + 0.7 * 0.1667 * 0.0911

=0.0336



Posterior Decoding

We can now calculate

Fk(i) Bk(i)

P(i = k | s) = –––––––

P(s)

Posterior Decoding now gives the most likely state at position i of 
sequence:

*i = argmaxk P(i = k | s)  

P(i = k | s) = 

P(i = k , s)/P(s) = 

P(s1, …, si, i = k, si+1, … sn) / P(s) =

P(s1, …, si, i = k) P(si+1, … sn | i = k) / P(s) =

Fk(i) Bk(i) / P(s)
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Decoding problem

• We have now 2 methods for decoding:

– Posterior decoding

– Viterbi algorithm

• Which is most appropriate?
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Posterior Decoding

• For each state 

– Posterior Decoding gives us a probability distribution for the 

state at each position

– This is sometimes more informative than Viterbi path *

• Posterior decoding takes into account all possible paths when 

determining the most likely state

• Viterbi method only takes into account one path, which may end up 

representing a minimal fraction of the total probability
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Posterior Decoding

• P(i = k | s)   =  P( | s) 1(i = k) 

=  {:[i] = k} P( | s)

s1 s2 s3 …………………………………………… sn

State 1

l P(i=l|s)

k

1() = 1, if  is true

0, otherwise
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HMMs for sequence alignment
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Hidden Markov Models for Sequence 

Alignment

• So far, we have used HMMs to detect certain 
regions from a single sequence

• HMMs can also be used for sequence alignment 
tasks
– Pair-HMM can be used to find high-scoring alignments 

between two sequences, allowing gaps

– Profile-HMM can be used to model a multiple alignment 
of a set of sequences

22



X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

M

(+1,+1)

X

(+1, 0)

Y

(0, +1)

Pair HMM

• Given 2 sequences X and 
Y, we want to identify 
their alignment

• Pair HMM consists of 
– Begin and End state 

which do not emit 
symbols

– Three normal states

• M (match)

• X (gap in Y)

• Y (gap in X) 

Begin End
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e

M

(+1,+1)

X

(+1, 0)

Y

(0, +1)

e d d

1-e1-e

1-2d

Pair HMM - Transitions

• Transition from M to X 
(resp. Y) opens a gap in Y 
(resp. X), 

• Transition back to M closes 
the gap
– δ ~ open gap probability

– ε ~ extend gap probability

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX
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Pair HMM - Emissions

• State M: emit (b,b’) with 
probability EM(b,b’)

• State X: emit (b,-) with 
probability Ex(b,-)

• State Y: emit (-,b’) with 
probability EY(-,b’)

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

E A C G T -

A

C EM EX

G

T

- EY
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Pair HMMs – Finding Optimal Alignment 

• A state sequence π from begin to end state that emits x 
and y gives an alignment for them
– Transition and emission probabilities give the probability of the 

alignment

• The best alignment of two sequences corresponds to the 
most probable state sequence 

* = argmax  P(x,y, )  

• Can be computed by the Viterbi algorithm

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX
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VM(i, j) = EM(xi, yj) max

VX(i, j) = EX(xi) max

VY(i, j) =EY(yj) max

(1 - 2δ) VM(i - 1, j - 1)

(1 - ε) VX(i - 1, j - 1)

(1 - ε) VY(i - 1, j - 1)

δ VM(i - 1, j)

ε VX(i - 1, j)

δ VM(i, j - 1)

ε VY(i, j - 1)

M

Px,y

X

qx

Y

qy

e
d d e

1-e1-e

1-2d

Viterbi for pair-HMMs

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX
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M

p(x,y)

X

p(x)

Y

p(y)

e d d e

1-e- t1-e- t

1-2d-t

Begin
End

Full model

• The complete model should also contain the transitions 
between the begin, end and normal states

t

t

td

d

1-2d
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Pair-HMM vs. Needleman-Wunsch

• Similarities:
– HMM transition to a match 

state ~ NW diagonal move

– HMM tr. to Y state ~ NW 
horizontal move

– HMM tr. to X state ~ NW 
vertical move

– HMM Emissions ~ NW 
substitutions

• Important difference:
– HMM transition and emission 

probabilities can be trained

– NW substitution scores fixed

A T - G T T A T
A T C G T - A C
M M Y M M X M M
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Profile Hidden Markov Models
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From Sequence to Structure to Function

• In functional genomics the goal 

is to annotate the genes by 

their function (e.g. catalysis of a 

biochemical reaction)

• In principle, possible functions 

of proteins are determined by 

their 3D structure

• 3D structure is in principle 

determined by the amino acid 

sequence

• Consequently, the amino 

sequence should determine the 

function 
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From Sequence to Structure to Function

• However, predicting the 3D 

structure of a protein (aka Protein 

folding problem) from the amino 

acid sequence is extremely 

difficult

– Not fully solved yet

• Also, predicting the function from 

the 3D structure is not easy

– Require molecular simulations run 

on supercomputers

• A shortcut is offered by Hidden 

Markov Models
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Profile Hidden Markov Models

• Protein families:

– Sets of related sequences and 

structures

– Diverged from each other in 

their primary sequence during 

evolution

– Some regions are more 

conserved than others

• Profile HMM is tailored to the 

family

– by defining the HMM structure 

to match the family

– by training the parameters with 

the sequences of that family
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Profile Hidden Markov Models – the 

approach
• We construct a HMM of a set of 

proteins that share a function or 
structural regions (called 
domains)

• This model can be used to give a 
probability for each new protein 
sequence to share that same 
function or domain

• The same sequence can be 
tested against a large set of 
HMM models

– high probability by a HMM 
indicates that our new sequence 
may share the domain or 
function modeled by that HMM
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Example: zinc finger domain

• Typically it functions as interaction 

module that binds DNA, RNA, 

proteins, or other small, useful 

molecules

• Several variants exist, one of which 

is depicted above right

• Below right a protein with three zinc 

finger domains embedded
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Example: zinc finger domain

• Part of the multiple alignment of 

proteins containing the zinc finger 

domain is depicted below

• The full alignment has 194 proteins 

• A profile HMM can be trained to 

recognize new members of the 

family

– Does not require 3D structure

• PFAM database contains a large 

number of profile HMMs for 

different structural and functional 

domains or motifs
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Structure of a Profile HMM

37



Match states

• Correspond to the columns of the 

multiple alignment

• Number of match states picked 

using expert knowledge e.g.

– average length of sequences in 

the alignment

– number of columns that contain 

at least 50% non-gap symbols

• Initial emission probabilities can 

be computed from the multiple 

alignment:

– For each amino acid, count the 

times it appears in each column
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Insertion and deletion states

• Insertion states allow the profile 

HMM to model symbols in the 

sequences that do not match 

the model

– aligning a symbol in sequence 

to a gap in the model

• Deletion states allow the profile 

HMM to model symbols deleted 

from the sequence

– aligning a gap in a sequence to 

a symbol in the model
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Summary: Building Profile HMM topology


