
CS-E5865 Computational

genomics
Autumn 2019, Lecture 5: HMM algorithms,
Pair HMM & Profile HMM

Lecturer: Pekka Marttinen

Assistants: Alejandro Ponce de León, Zeinab
Yousefi, Onur Poyraz

Lecture 5, 2020

HMM problems and algorithms

1. Find the most likely hidden state sequence => Viterbi

algorithm ✔

2. Estimate the emission and transition probabilities of the

HMM => Viterbi training ✔

3. Determine the probability of a sequence s given the

HMM model => Forward algorithm

4. Determine the probability of being in state k at position i
=> Posterior decoding

2

Forward, Backward & Posterior decoding

3

The Forward Algorithm

• Task: calculate the probability P(s) of sequence s, given
by our HMM

• Sum over all possible hidden state paths (set ) that
could have been used to generate s:

𝑃 𝑠 = ෍

𝜋∈Π

𝑃 𝑠, 𝜋 = ෍

𝜋∈Π

𝑃 𝑠 𝜋 𝑃(𝜋)

• Exponential sum, cannot enumerate over all state paths!

• Again, we will define a dynamic programming problem,
and fill a table of forward probabilities

Fk(i) = P(s1…si, i = k)
• Probability of emitting the prefix s1,…,si and ending up in

state k

4

The Forward Algorithm – derivation

Fk(i) = P(s1…si, i = k)

= l P(s1…si, i-1 = l ,i = k)

= l P(s1…si-1, i-1 = l) P(i = k|i-1 = l) P(si|i = k)

= l P(s1…si-1, i-1 = l) Tlk Ek(si)

= Ek(si) l Fl(i – 1) Tlk

• Sum over all possibilities of emitting s1,…,si-1, ending up in state l,
and then making a transition from l to k, and emitting si

5

• Fk(i) = Ek(si) l Fl(i – 1) Tlk

• Dynamic programming

formulation:

– table F of size m X n where:

• m=num of hidden states

• n=length of the observed

sequence

Initialization: (first column)

F(k,1) = 1/m Ek(s1), for all k > 0

Iteration

F(k,i) = Ek(si) l F(l,i – 1) Tlk, for

all k, and for all i=2,...,n

Termination: (sum all the values

in the last column)

P(s) = k F(k,n)

• Difference to Viterbi: replace

max with sum

The Forward Algorithm

Forward at the Casino

7

F(k,i) = Ek(si) l F(l,i – 1) Tlk

• Initialization

F(1,1)= EFair(s1) 0.5 = 0.1667 * 0.5 = 0.08335

F(2,1)= ELoaded(s1) 0.5 = 0.1 * 0.5 = 0.0500

Forward at the Casino

F(k,i) = Ek(si) l F(l,i – 1) Tlk

• Compute F(1,2)

• For clarity, we’ll use informal notation F(fair,2) for F(1,2)

• F(fair,2) = P(s1,s2, 2 = fair)

= Efair(s2) l F(l,1) Tl,fair

=0.1667 [F(fair,1) Tfair,fair + F(loaded,1)Tloaded,fair]

=0.1667[0,0833 * 0,7 + 0,05 * 0,3] = 0.0122

And so on, until the table is filled..

Forward at the Casino

F(k,i) = Ek(si) l F(l,i – 1) Tlk

• The probability of the full sequence s:

P(s) = F(fair,10)+F(loaded,10)

• Note: working with logarithms is not as

straightforward as with Viterbi (logarithm of a sum

does not simplify).

• For an algorithm that deals with this issue, see

e.g., Bishop: Pattern Recognition and Machine

Learning, Ch. 13.2 (not required on this course).

Forward at the Casino

F(k,i) = Ek(si) l F(l,i – 1) Tlk

Backward Algorithm - motivation

• Posterior decoding problem: We want to compute the probability of state k for

position i given sequence s: P(i = k | s)

– e.g. “During i’th roll Casino was using the loaded dice”, “Nucleotide si belongs to an

ORF”

– This is different from computing the most likely path 1 …n by Viterbi

• We compute the result by splitting the sequence into two parts and computing

the probabilities of prefixes and suffixes of s, such that the hidden state at

position i is k: P(i = k, s) = P(s1…si, i = k, si+1…sn)

= P(s1…si, i = k) P(si+1…sn | s1…si, i = k)

= P(s1…si, i = k) P(si+1…sn | i = k)

• Then, P(i = k | s) = P(i = k, s) / P(s)

Forward, Fk(i) Backward, Bk(i)

11

The Backward Algorithm – derivation

Define the backward probability:

Bk(i) = P(si+1…sn | i = k)

= l P(si+1,si+2, …, sn, i+1=l | i = k)

= l P(si+1,si+2, …, sn | i+1 = l) P(i+1 = l | i = k)

= l P(si+2, …, sn | i+1 = l) P(si+1 | i+1 = l) P(i+1 = l | i = k)

= l El(si+1)Tkl Bl(i+1)

12

The Backward Algorithm
We can compute Bk(i) for all k, i, using dynamic programming

• Fill in a table B of size m X n where:
– m=nr of hidden states

– n=length of the observed sequence

Initialization:

B(k,n) = 1, for all k

Iteration: (backward from position n to 1)

B(k,i) = l El(si+1) Tkl B(l,i+1)

13

Backward at the casino

14

B(k,i) = l El(si+1) Tkl B(l,i+1)

Backward at the casino

15

B(k,i) = l El(si+1) Tkl B(l,i+1)

• Initialization

B(1,n)=F(fair,n)= 1

B(2,n)=F(loaded,n)=1

Backward at the casino

16

B(k,i) = l El(si+1) Tkl B(l,i+1)

• Recursion, for example:

B(fair,7)= P(s8,...,s10| 7 = fair)

=Tfair,loadedEloaded(s8)B(loaded,8)+ Tfair,fairEfair(s8)B(fair,8)

=Tfair,loadedEloaded(6)B(loaded,8)+ Tfair,fairEfair(6)B(fair,8)

= 0.3 * 0.5 * 0.1533 + 0.7 * 0.1667 * 0.0911

=0.0336

Posterior Decoding

We can now calculate

Fk(i) Bk(i)

P(i = k | s) = –––––––

P(s)

Posterior Decoding now gives the most likely state at position i of
sequence:

*i = argmaxk P(i = k | s)

P(i = k | s) =

P(i = k , s)/P(s) =

P(s1, …, si, i = k, si+1, … sn) / P(s) =

P(s1, …, si, i = k) P(si+1, … sn | i = k) / P(s) =

Fk(i) Bk(i) / P(s)

17

Decoding problem

• We have now 2 methods for decoding:

– Posterior decoding

– Viterbi algorithm

• Which is most appropriate?

18

Posterior Decoding

• For each state

– Posterior Decoding gives us a probability distribution for the

state at each position

– This is sometimes more informative than Viterbi path *

• Posterior decoding takes into account all possible paths when

determining the most likely state

• Viterbi method only takes into account one path, which may end up

representing a minimal fraction of the total probability

19

Posterior Decoding

• P(i = k | s) =  P( | s) 1(i = k)

=  {:[i] = k} P( | s)

s1 s2 s3 …………………………………………… sn

State 1

l P(i=l|s)

k

1() = 1, if  is true

0, otherwise

20

HMMs for sequence alignment

21

Hidden Markov Models for Sequence

Alignment

• So far, we have used HMMs to detect certain
regions from a single sequence

• HMMs can also be used for sequence alignment
tasks
– Pair-HMM can be used to find high-scoring alignments

between two sequences, allowing gaps

– Profile-HMM can be used to model a multiple alignment
of a set of sequences

22

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

M

(+1,+1)

X

(+1, 0)

Y

(0, +1)

Pair HMM

• Given 2 sequences X and
Y, we want to identify
their alignment

• Pair HMM consists of
– Begin and End state

which do not emit
symbols

– Three normal states

• M (match)

• X (gap in Y)

• Y (gap in X)

Begin End

23

e

M

(+1,+1)

X

(+1, 0)

Y

(0, +1)

e d d

1-e1-e

1-2d

Pair HMM - Transitions

• Transition from M to X
(resp. Y) opens a gap in Y
(resp. X),

• Transition back to M closes
the gap
– δ ~ open gap probability

– ε ~ extend gap probability

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

24

Pair HMM - Emissions

• State M: emit (b,b’) with
probability EM(b,b’)

• State X: emit (b,-) with
probability Ex(b,-)

• State Y: emit (-,b’) with
probability EY(-,b’)

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

E A C G T -

A

C EM EX

G

T

- EY

25

Pair HMMs – Finding Optimal Alignment

• A state sequence π from begin to end state that emits x
and y gives an alignment for them
– Transition and emission probabilities give the probability of the

alignment

• The best alignment of two sequences corresponds to the
most probable state sequence

* = argmax  P(x,y, )

• Can be computed by the Viterbi algorithm

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

26

VM(i, j) = EM(xi, yj) max

VX(i, j) = EX(xi) max

VY(i, j) =EY(yj) max

(1 - 2δ) VM(i - 1, j - 1)

(1 - ε) VX(i - 1, j - 1)

(1 - ε) VY(i - 1, j - 1)

δ VM(i - 1, j)

ε VX(i - 1, j)

δ VM(i, j - 1)

ε VY(i, j - 1)

M

Px,y

X

qx

Y

qy

e
d d e

1-e1-e

1-2d

Viterbi for pair-HMMs

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC

Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX

27

M

p(x,y)

X

p(x)

Y

p(y)

e d d e

1-e- t1-e- t

1-2d-t

Begin
End

Full model

• The complete model should also contain the transitions
between the begin, end and normal states

t

t

td

d

1-2d

28

Pair-HMM vs. Needleman-Wunsch

• Similarities:
– HMM transition to a match

state ~ NW diagonal move

– HMM tr. to Y state ~ NW
horizontal move

– HMM tr. to X state ~ NW
vertical move

– HMM Emissions ~ NW
substitutions

• Important difference:
– HMM transition and emission

probabilities can be trained

– NW substitution scores fixed

A T - G T T A T
A T C G T - A C
M M Y M M X M M

29

Profile Hidden Markov Models

30

From Sequence to Structure to Function

• In functional genomics the goal

is to annotate the genes by

their function (e.g. catalysis of a

biochemical reaction)

• In principle, possible functions

of proteins are determined by

their 3D structure

• 3D structure is in principle

determined by the amino acid

sequence

• Consequently, the amino

sequence should determine the

function

31

From Sequence to Structure to Function

• However, predicting the 3D

structure of a protein (aka Protein

folding problem) from the amino

acid sequence is extremely

difficult

– Not fully solved yet

• Also, predicting the function from

the 3D structure is not easy

– Require molecular simulations run

on supercomputers

• A shortcut is offered by Hidden

Markov Models

32

Profile Hidden Markov Models

• Protein families:

– Sets of related sequences and

structures

– Diverged from each other in

their primary sequence during

evolution

– Some regions are more

conserved than others

• Profile HMM is tailored to the

family

– by defining the HMM structure

to match the family

– by training the parameters with

the sequences of that family

33

Profile Hidden Markov Models – the

approach
• We construct a HMM of a set of

proteins that share a function or
structural regions (called
domains)

• This model can be used to give a
probability for each new protein
sequence to share that same
function or domain

• The same sequence can be
tested against a large set of
HMM models

– high probability by a HMM
indicates that our new sequence
may share the domain or
function modeled by that HMM

34

Example: zinc finger domain

• Typically it functions as interaction

module that binds DNA, RNA,

proteins, or other small, useful

molecules

• Several variants exist, one of which

is depicted above right

• Below right a protein with three zinc

finger domains embedded

35

Example: zinc finger domain

• Part of the multiple alignment of

proteins containing the zinc finger

domain is depicted below

• The full alignment has 194 proteins

• A profile HMM can be trained to

recognize new members of the

family

– Does not require 3D structure

• PFAM database contains a large

number of profile HMMs for

different structural and functional

domains or motifs

36

Structure of a Profile HMM

37

Match states

• Correspond to the columns of the

multiple alignment

• Number of match states picked

using expert knowledge e.g.

– average length of sequences in

the alignment

– number of columns that contain

at least 50% non-gap symbols

• Initial emission probabilities can

be computed from the multiple

alignment:

– For each amino acid, count the

times it appears in each column

38

Insertion and deletion states

• Insertion states allow the profile

HMM to model symbols in the

sequences that do not match

the model

– aligning a symbol in sequence

to a gap in the model

• Deletion states allow the profile

HMM to model symbols deleted

from the sequence

– aligning a gap in a sequence to

a symbol in the model

39

Summary: Building Profile HMM topology

