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Generalization

• Our aim is to predict as well as possible the outputs of future

examples, not only for training sample

• We would like to minimize the generalization error, or the (true)

risk

R(h) = E(x,y)∼D [ L(h(x), y) ] ,

where L(y , y ′) is a suitable loss function (e.g. zero-one loss)

• Assuming future examples are independently drawn from the same

distribution D that generated the training examples (i.i.d

assumption)

• But we do not know D!

• What can we say about R(h) based on training examples and the

hypothesis class H alone? Two possibilities:

• Empirical evaluation through testing

• Statistical learning theory (Lectures 2 and 3)
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Additional reading

• This lecture mostly follows

Mohri et al: chapter 2

• The book goes deeper in the

theory (e.g. proofs of

theorems) than what we do

in the course
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Probably approximately correct

learning



Probably Approximate Correct Learning framework

• Probably Approximate Correct (PAC) Learning framework formalizes

the notion of generalization in machine learning

• Ingredients:

• input space X containing all possible inputs x

• set of possible labels Y (in binary classification Y = {0, 1})
• Concept class C containing concepts C : X 7→ Y (to be learned),

concept C gives a label C(x) for each input x

• unknown probability distribution D

• training sample S = (x1,C(x1)), . . . , (xm,C(xm)) drawn

independently from D

• hypothesis class H, in the basic case H = C but this assumption can

be relaxed

• The goal in PAC learning is to learn a hypothesis with a low

generalization error

R(h) = Ex∼D
[
L0/1(h)

]
= Pr

x∼D
(h(x) 6= C (x))
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PAC learnability

• A class C is PAC-learnable, if there exist an algorithm A that given

a training sample S outputs a hypothesis hS ∈ H that has

generalization error satisfying

Pr(R(hS) ≤ ε) ≥ 1− δ

• for any distribution D, for arbitrary ε, δ > 0 and sample size m = |S |
that grows at polynomially in 1/ε,1/δ

• for any concept C ∈ C

• In addition, if A runs in time polynomial in m,1/ε,and 1/δ the class

is called efficiently PAC learnable
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Interpretation

Let us interpret the bound

Pr(R(hS) ≤ ε) ≥ 1− δ

• ε sets the level of generalization error that is of interest to us, say we

are content with predicting incorrecly 10% of the new data points:

ε = 0.1

• 1− δ sets a level of confidence, if we are content of the training

algorithm to fail 5% of the time to provide a good hypothesis:

δ = 0.05

• We want the requirement for training data and running time grow

modestly when we make ε and δ stricter: requirement of polynomial

growth

• The event ”low generalization error”, {R(hS) ≤ ε} is considered as a

random variable because we cannot know beforehand which

hypothesis hS ∈ H will be selected by the algorithm
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Generalization error bound vs. test error

• Generalization error bounds concern

the tail of the error distribution

• We wish a high generalization error

to be a rare event

• Expected generalization error might

be considerably lower

• Analyzing average behaviour where

most distributions and concepts are

”not bad”
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Example: learning axis-parallel

rectangles



PAC learning the ”family car”

Assumptions

• True concept C (”family car”) can be

represented with a axis-parallel

rectangle

• Our algorithm chooses the smallest

rectangle hS that includes all positive

training examples (the most specific

hypothesis)

• The smallest rectangle is consistent,

i.e. does not contain any negative

examples

How many examples do we need to guarantee Pr(R(hS) ≤ ε) ≥ 1− δ?
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PAC learning the ”family car”

How many examples do we need to guarantee Pr(R(hS) ≤ ε) ≥ 1− δ

• The generalization error

R(hS) = Pr(C∆hS) is the measure of

the symmetric difference

C∆hS = {x ∈ X |hS(x) 6= C (x)}
• We need to bound the probability

mass in the difference: Pr(C∆hS) < ε

given the knowledge that no randomly

drawn example fell inside the region

• Draw 4 strips of probability mass ε/4

(top, bottom, right, left) inside C ;

their union has probability mass < ε
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PAC learning the ”family car”

• Events

A = {hS intersects all four strips},
B = {R(hS) < ε}, satisfy A ⊆ B

• Complement events

AC = {hS misses at least one strip },
BC = {R(hS) ≥ ε} satisfy BC ⊆ AC

• BC is the bad event (high

generalization error), we want it to

have low probability

• In probability space, we have

Pr(BC ) ≤ Pr(AC )

• Let us now upper bound Pr(AC )
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PAC learning the ”family car”

AC = {hS misses at least one strip }
= {hS misses the left strip }∪
{hS misses the right strip }∪
{hS misses the top strip }∪
{hS misses the bottom strip }
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PAC learning the ”family car”

• Each strip has probability

mass ε/4 by our design

• Probability of one example

missing one strip: 1− ε/4

• Probability of m examples

missing one strip: (1− ε/4)m

(m times repeated trial with

replacement)

• Probability of all examples

missing at least one of the

strips:

Pr(AC ) ≤ 4(1− ε/4)m
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PAC learning the ”family car”

• We can use a general inequality

∀x : (1− x) < exp(−x) to obtain:

Pr(R(h) ≥ ε) ≤ 4(1−ε/4)m ≤ 4 exp(−mε/4)

• We want this probability to be small

(< δ):

4 exp(−mε/4) < δ

⇔ m ≥ 4/ε log 4/δ

• The last inequality is our first

generalization error bound, a sample

complexity bound to be exact
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Plotting the behaviour of bound

• Left, the sample complexity, the number of examples needed to

reach a given generalization error level is shown m(ε, δ) = 4/ε log 4/δ

• Right, the generalization bound is plotted as a function of training

sample size ε(m, δ) = 4/m log 4/δ

• Three different confidence levels (δ) are plotted
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Plotting the behaviour of the bound

Typical behaviour of ML learning algorithms is revealed:

• increase of sample size decreases generalization error

• extra data gives less and less additional benefit as the sample size

grows (law of diminishing returns)

• requiring high level of confidence (small δ) for obtaining low error

requires more data for the same level of error
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Generalization error bound vs. expected test error

• The error bounds hold for any concept

from the class (e.g. ”all vehicles” vs.

”family car”)

• including difficult concepts, e.g.

”Crossover SUV”

• They hold for any distribution D

generating the data

• Including adversially generated

distributions (aiming to make

learning harder)

• For these reasons empirically

estimated test errors might be

considerably lower than the bounds

suggest
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Notes

• The proof was very specific for the chosen class (axis-parallel

rectangles), and not easy to immediately apply to other class

• In the following we show a general result for finite hypothesis sets

• Later analyze infinite hypothesis classes (Lecture 3)
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Guarantees for finite hypothesis

sets



Finite hypothesis classes

• Finite concept classes arise when:

• Input variables have finite domains or they are converted to such in

preprocessing (e.g. discretizing real values), and

• The representations of the hypotheses have finite size (e.g. the

number of times a single variable can appear)

• Subclasses of Boolean formulae, that expressions binary input

variables (literals) combined with logical operators (AND, OR,

NOT,...)

• Finite concept classes have been thoroughly analyzed hypothesis

classes in statistical learning theory
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Example: Boolean conjunctions

• Aldo likes to do sport only when the weather is suitable

• Also has given examples of suitable and not suitable weather

• Let us build a classifier for Aldo to decide whether to do sports today

• As the classifier we use rules in the form of boolean conjunctions

(boolean formulae containing AND, and NOT, but not OR

operators): e.g. if (Sky=Sunny) AND NOT(Wind=Strong) then

(EnjoySport=1)
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Finite hypothesis class - consistent case

• Sample complexity bound relying on the size of the hypothesis class

(Mohri et al, 2012): Pr(R(hs) ≤ ε) ≥ 1− δ if

m ≥ 1

ε
(log(|H|) + log(

1

δ
))

• An equivalent generalization error bound:

R(h) ≤ 1

m
(log(|H|) + log(

1

δ
))

• Holds for any finite hypothesis class assuming there is a consistent

hypothesis, one with zero empirical risk

• Extra term compared to the ”family car” example is the term
1
ε (log(|H|))

• The more hypotheses there are in H, the more training examples are

needed
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Example: Boolean conjunctions

• How many different conjunctions can be built (=|H|)
• Each variable can appear with or without ”NOT” or can be excluded

from the rule = 3 possibilities

• The total number of hypotheses is thus 3d , where d is the number

of variables

• We have six variables in total, giving us |H| = 36 = 729 different

hypotheses
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Plotting the bound for Aldo’s problem using boolean conjunc-

tions

• On the left, the generalization bound is shown for different values of

δ, using d = 6 variables

• On the right, the bound is shown for increasing number of input

variables d , using δ = 0.05

21



Arbitrary boolean formulae

• What about using arbitrary boolean formulae?

• How many boolean formulae of d variables there are?

• There are 2d possible input vectors, size of the input space is

|X | = 2d

• We can define a boolean formula that outputs 1 for an arbitrary

subset of S ⊂ X and zero outside that subset:

fS(x) = (x = x1)OR(x = x2)OR · · ·OR(x = x|S|)

• We can pick the subset in 2|X | ways (Why?)

• Thus we have |H| = 22d different boolean formula

• Our generalization bound gives

m ≥ 1

ε
(2d log 2 + log(

1

δ
))

• Thus we need exponential number of examples with respect to the

number of variables; the hypothesis class is considered not

PAC-learnable!
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Plotting the bound for Arbitrary boolean formulae

• With d = 6 variables we need ca. 500 examples to get bound below

0.07 (left picture)

• Increase of number of variables quickly raises the sample complexity

to 106 and beyond (right picture)
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Finite hypothesis class - inconsistent case

• So far we have assumed that there is a consistent hypothesis h ∈ H,

one that achieves zero empirical risk on training sample

• In practise this is often not the case

• However as long as the empirical risk R̂(h) is small, a low

generalization error can still be achieved

• Generalization error bound (Mohri, et al. 2012): Let H be a finite

hypothesis set. Then for any δ > 0 with probability at least 1− δ we

have for all h ∈ H:

R(h) ≤ R̂(h) +

√
log(|H|) + log(2/δ)

2m

• We see the dependency from log |H|/m as in the consistent case but

now under square root

• Slower convergence w.r.t number of examples
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Stochastic scenario



Stochastic scenario

• The analysis so far assumed that the labels are deterministic

functions of the input

• Stochastic scenario relaxes this assumption by assuming the output

is a probabilistic function of the input

• The input and output is generated by a joint probability distribution

D or X × Y.

• This setup covers different cases when the same input x can have

different labels y

• Agnostic PAC learning studies the generalization guarantees in the

stochastic scenario (will not be covered in this course)
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Sources of stochasticity

The stochastic dependency between input and output can arise from

various sources

• Imprecision in recording the input data (e.g. measurement error),

shifting our examples

• Errors in the labeling of the training data (e.g. human annotation

errors), flipping the labels some examples

• There may be additional variables that affect the labels that are not

part of our input data

All of these sources could be characterized as adding noise (or hiding

signal)
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Bayes error and noise

• In the deterministic scenario, there is a target concept f that has

zero generalization error R(f ) = 0

• In the stochastic scenario, there is a minimal non-zero error for any

hypothesis, called the Bayes error

• Bayes error is the minimum achievable error, given a distribution D

over X × Y, by measurable functions h : X 7→ Y

R∗ = inf
{h|h measurable }

R(h)

• A hypothesis with R(h) = R∗ is called the Bayes classifier
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Bayes error and noise

• The Bayes classifier can be defined in terms of conditional

probabilities as

hBayes(x) = argmaxy∈{0,1}Pr(y |x)

• The average error made by the Bayes classifer at x ∈ X is called the

noise

noise(x) = min(Pr(1|x),Pr(0|x))

• Its expectation E (noise(x)) = R∗ is the Bayes error

• Remember that since we do not know D, we cannot actually

compute the Bayes classifier!

• It serves as a theoretical model of the best possible performance
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Decomposing the generalization error

The generalization error of a hypothesis can be decomposed as follows

R(h) = R∗ + εestimation + εapproximation

• R∗ is the Bayes error or noise, which depends on the task and

cannot be avoided

• εestimation = R(h)− R(h∗) is the excess generalization error h has

over the optimal hypothesis h∗ = argminh′∈HR(h′) in the

hypothesis class H
• εapproximation = R(h∗)− R∗ is the approximation error due to

selecting the hypothesis class H instead of the best possible

hypothesis class (which is generally unknown to us)

• Note: The approximation error is sometimes called the bias and the

estimation error the variance, and the decomposition bias-variance

decomposition
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The trade-off between empirical error and complexity

The generalization error bounds we derived have the form

R(h) ≤ R̂(h) + O(
log |H|

m
)

The second term can be interpreted as measuring the model complexity

through the number of hypotheses in the class

• We have a trade-off:

increasing model complexity

or capacity generally

decreases empirical error but

increases the complexity term

• To minimize the

generalization error, we

should find a balance

between the two terms

30



Controlling complexity

Two general approaches to control the complexity

• Selecting a hypothesis class, e.g. the maximum degree of polynomial

to fit the regression model - this would typically be done prior to

learning

• Regularization: penalizing the use of too many parameters, e.g. by

bounding the norm of the weights (used in SVMs and neural

networks) - this would typically happen automatically during learning

(after setting the amount of regularization prior learning)
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Measuring complexity

What is a good measure of complexity of a hypothesis class?

• Number of distinct hypotheses |H|: works for finite H (e.g. models

build form binary data), but not for infinite classes (e.g. geometric

hypotheses such as polygons, hyperplanes, ellipsoids)

• Vapnik-Chervonenkis dimension (VCdim): the maximum number of

examples that can be classified in all possible ways by choosing

different hypotheses h ∈ H
• Rademacher complexity: measures the capability to classify after

randomizing the labels

Next lecture will focus on the two latter measures of complexity
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Extra material: Proof outline of

the PAC bound for finite

hypothesis classes*



Proof outline* (Mohri et al., 2012)

• Consider any hypothesis h ∈ H with R(h) > ε

• For h to be consistent R̂(h) = 0, all training examples need to miss

the region where h is making an error.

• The probability of this event is

Pr(R̂(h) = 0|R(h) > ε) ≤ (1− ε)m

• m times repeated trial with success probability ε

• This is the probability that one consistent hypothesis has high error
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Proof outline*

• But we do not need which consistent hypothesis h is selected by our

learning algorithm

• Hence our result will need to hold for all consistent hypotheses

• This is an example of uniform convergence bound

• We wish to upper bound the probability that some h ∈ H is

consistent R̂(h) = 0 and has generalization error R(h) > ε for a

fixed ε > 0:

Pr(∃h ∈ H|R̂(h) = 0 ∧ R(h) > ε)

• Above ∧ is the logical ”and”
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Proof outline*

• We can replace ∃ by enumerating all hypotheses in H using

logical-or (∨)

Pr(∃h ∈ H|R̂(h) = 0 ∧ R(h) > ε) =

Pr(R̂(h1) = 0 ∧ R(h1) > ε) ∨ Pr(R̂(h2) = 0 ∧ R(h2) > ε) ∨ · · ·

• Using the the fact that Pr(A) ∪ Pr(B) ≤ Pr(A) + Pr(B) and

Pr(A ∩ C ) ≤ Pr(A|C ) for any events A,B and C the above is upper

bounded by

≤
∑
h∈H

Pr(R̂(h) = 0 ∧ R(h) > ε) ≤
∑
h∈H

Pr(R̂(h) = 0|R(h) > ε)

≤ |H|(1− ε)m

• Last inequality follows from using the

Pr(R̂(h) = 0|R(h1) > ε) ≤ (1− ε)m for the |H| summands
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Proof outline*

• We have established

Pr(∃h ∈ H|R̂(h) = 0 ∧ R(h) > ε) ≤ |H|(1− ε)m ≤ |H| exp(−mε)

• Set the right-hand side equal to δ and solve for m to obtain the

bound:

δ = |H| exp (−mε)
log δ = log |H| −mε

m =
1

ε
(log(|H|) + log(1/δ))
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