School of Science

Lecture 2: Plasma particles with E and B fields

Today's Menu

- Magnetized plasma \& Larmor radius
- Plasma's diamagnetism
- Charged particle in a multitude of EM fields: drift motion
- ExB drift, gradient drift, (later: curvature drift, polarization drift, ...)
- Concept of a guiding center
- Magnetic moment
- Magnetic mirror \& Loss cone
- Adiabatic invariants 1, 2 ,3 and their usefulness

Plasmas of interest

Not only are the plasmas of our interest (space \& fusion) weakly coupled, they are also magnetized ... Why?

Earth has its own magnetic field that, in the first approximation, can be considered a dipole field.

In fusion energy research, the VERY hot plasma is kept away from the vessel walls by magnetic field.

Charged particles in magnetic field

Consider a charge particle (q, m) in uniform magnetic field, $\boldsymbol{B}=B_{0} \hat{\mathbf{z}}$.
Lorentz force: $m \frac{d v}{d t}=q \boldsymbol{v} \times \boldsymbol{B}$

$$
\begin{aligned}
m \frac{d v_{x}}{d t} & =q v_{y} B_{0} \\
m \frac{d v_{y}}{d t} & =-q v_{x} B_{0} \\
m \frac{d v_{z}}{d t} & =0
\end{aligned}
$$

Collect the constants into $\Omega \equiv q B_{0} / m$, Larmor/cyclotron frequency $\mathrm{HW} \rightarrow v_{x}=v_{\perp} \sin \Omega t$ with $v_{y}=v_{\perp} \cos \Omega t$ (or vice versa), $v_{z}=v_{\|}$

Larmor motion ...

Integrate in time (HW) $\rightarrow x=\frac{v_{1}}{\Omega} \sin \Omega t \& y=-\frac{v_{1}}{\Omega} \cos \Omega t$
\rightarrow charged particles are gyrating around the magnetic field line on a circle with the radius defined by their perpendicular velocity and magnetic field strength:

$$
\text { Larmor radius: } \quad r_{L}=\frac{m v_{\perp}}{q B}
$$

Notice rightaway (effects one-by-one):

- Strong field \rightarrow stick close to field line
- Big charge number \rightarrow stick close to field line
- Large perpendicular velocity \rightarrow large gyro radius
- Large mass \rightarrow large excursions from the field line

... and diamagnetism

Particles in plasma thus carry out circular motion around field lines.
A charged particle on a circular path forms a current ring . Ampere's law

$$
\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{j} \ldots \text { recall your course in EM }
$$

\rightarrow additional magnetic field opposite to the background field
\rightarrow A plasma is diamagnetic (... except in some special cases...), i.e., tends to reduce the imposed magnetic field

Concept of magnetized plasma

A plasma is considered magnetized if the Larmor radius is much much smaller than the scale length L over which the magnetic field changes appreciably.

$$
r_{L} \ll L
$$

Note: not exactly uniform B fields...

Charged particle motion in simple or 'simplish' fields

Add a uniform electric field, $E=E_{0}$

$\boldsymbol{E}=E_{0} \hat{\mathbf{z}} \boldsymbol{\rightarrow}$ simply acceleration in the direction of \boldsymbol{B}
Take \boldsymbol{E} perpendicular to \boldsymbol{B}, e.g., $\boldsymbol{E}=E_{0} \widehat{\boldsymbol{x}}$
Think what happens now during the gyration period ...

Particle seems to move in direction perpendicular to both E and B fields!!!

Do the math

Equations of motion: $\quad \frac{d v_{x}}{d t}=\Omega v_{y}+\frac{q E_{0}}{m}$

$$
\frac{d v_{y}}{d t}=-\Omega v_{x}
$$

HW
$\rightarrow v_{x}=v_{\perp} \sin \Omega t$

$$
v_{y}=v_{\perp} \cos \Omega t+\frac{E_{0}}{B_{0}}
$$

Indeed, the particle drifts perpendicular to both fields!
Useful concept: the 'center of gyro motion', the guiding center, drifts.

The ExB drift

This guiding-center drift is called the $\boldsymbol{E} \times \boldsymbol{B} \boldsymbol{d r i f t}$ and it has a very important role especially in fusion plasma physics.

General (vector) form: $\boldsymbol{v}_{E x B}=\frac{E \times B}{B^{2}}$
Things to notice:

- The drift does not depend on the particle - everybody drifts in the same direction with the same velocity!
- This drift is not really specific to just electric field. Any external force, $\mathbf{E} \boldsymbol{\rightarrow}$ F/q, would cause such a drift - but this time depending on the charge!
- e.g., gravitational force

Charged particle motion in nonuniform magnetic field

Part l: $\nabla B \perp \boldsymbol{B}=B_{0} \hat{z}$

Choose the axes so that $\nabla \mathrm{B} \| \hat{y}$
What happens now during one gyration period ...

The particle is moving (= drifting) in direction perpendicular to both the B field and its gradient!!!

Do the math ...

Taylor expand the magnetic field remembering that $r_{L} \ll L$

$$
\begin{gathered}
B_{z}=B_{o}+y \frac{\partial B_{z}}{\partial y}+\ldots \\
F_{y}=-q v_{x} B_{z}(y) \approx-q v_{\perp}(\sin \Omega t)\left[B_{o}+r_{L}(\sin \Omega t) \frac{\partial B_{z}}{\partial y}\right]
\end{gathered}
$$

where we have also used the unperturbed orbit to evaluate the force.
Why? -- Ω gives the shortest time scale \rightarrow average over one gyro period
$\left.<\sin \Omega t>=0,<(\sin \Omega t)^{2}\right\rangle=\frac{1}{2} \quad \rightarrow\left\langle F_{y}\right\rangle= \pm \frac{1}{2} q v_{\perp} r_{L} \frac{\partial B_{z}}{\partial y}$

The gradient drift

So there is an effective net force on the particle
\rightarrow obtain GC drift from the generalized ExB drift:

$$
v_{G C}=\frac{1}{q} \frac{\boldsymbol{F} \times \boldsymbol{B}}{B^{2}}=\frac{1}{q} \frac{F_{y}}{B_{0}} \hat{x}= \pm \frac{1}{2 B_{0}} v_{\perp} r_{L} \frac{\partial B_{z}}{\partial y}
$$

\rightarrow The gradient drift (∇B-drift) in general vector form

$$
\boldsymbol{v}_{\nabla B}= \pm \frac{1}{2} v_{\perp} r_{L} \frac{B \times \nabla B}{B^{2}}
$$

This drift does depend on the charge, as indicated by the \pm sign

Part II: $\nabla \mathrm{B}\left|\mid \mathbf{B}=B_{0} \mathbf{z}\right.$

For axial B-field to have parallel gradient means that the field must have also a radial component. It can be obtained from $\nabla \cdot \boldsymbol{B}=0$:
Cylindrical symmetry \rightarrow cylindrical coordinates: $\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{\partial B_{z}}{\partial z}=0$ Assume slowly varying magnetic field \rightarrow

$$
r B_{r}=-\int_{0}^{r} r \frac{\partial B_{z}}{\partial z} d r \approx-\frac{1}{2} r^{2}\left[\frac{\partial B_{z}}{\partial z}\right]_{r=0} \quad \rightarrow B_{r} \approx-\frac{1}{2} r\left[\frac{\partial B_{z}}{\partial z}\right]_{r=0}
$$

Non-uniformity in $r \boldsymbol{\rightarrow}$ gradient drift in poloidal direction. No problem. © (Radial drift would require non-uniformity in poloidal direction)

Full Lorentz force in cylindrical coordinates

$$
\begin{aligned}
& \left.F_{r}=q v_{\theta} B_{z}\right) \\
& \begin{array}{l}
\text { Gyro motion } \\
F_{\theta}=q\left(v_{z} B_{r}-v_{r} B_{z}\right)
\end{array} \begin{array}{l}
\text { around the fieldline }
\end{array} F_{z}=-q v_{\theta} B_{r}
\end{aligned}
$$

- The 1st term in F_{θ} causes a radial drift that forces the particle to follow the bending field lines
- The new physics is brought about by F_{z}.
- For simplicity, study a particle "on" the axis, $r_{G C}=0$:

$$
F_{z}=-q v_{\perp} \frac{1}{2} r_{L}\left[\frac{\partial B_{z}}{\partial z}\right] r=0
$$

Magnetic force along the field ...

$$
r_{L}=m v_{\perp} / q B \rightarrow \quad F_{z}=-\frac{1}{2} \frac{m v_{\perp}^{2}}{B}\left[\frac{\partial B_{z}}{\partial z}\right]=-\mu\left[\frac{\partial B_{z}}{\partial z}\right]
$$

where $\mu \equiv \frac{1}{2} \frac{m v_{\perp}^{2}}{B}$ is the so-called magnetic moment of the particle.
General (vector) form: $\boldsymbol{F}_{\|}=-\mu \nabla_{\|} B$
Note:

- μ can be understood as the magnetic moment due to the current loop created by the gyrating particle (HW)
- The force causes a braking action when particle moves towards higher field ...
$\Delta 5 \begin{aligned} & \text { Aalto University } \\ & \text { School of Scienc }\end{aligned}$

Now we have a bunch of drifts... What next?

Magnetic mirrors

"Magnetic bottle": first attempt to magnetic confinement ...
Linear device $\boldsymbol{\rightarrow} \boldsymbol{B} \approx B(\mathrm{z}) \hat{z} \ldots$
$\rightarrow m \frac{d v_{\|}}{d t}=-\mu \frac{\partial B}{\partial s} \quad \begin{aligned} & s=\text { distance } \\ & \text { along a field line }\end{aligned}$
Multiply by $v_{\|}=\frac{d s}{d t}$

$\rightarrow \frac{m}{2} \frac{d}{d t}\left(v_{\|}^{2}\right)=-\mu \frac{\partial B}{\partial s} \frac{\partial s}{\partial t}=-\mu \frac{d B}{d t}$
Note: B does not depend on time, but a particle sees it varying 'in time'.

... and invariance of μ

$\rightarrow \frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}+\mu B\right)=B \frac{d \mu}{d t}$

Recall the definition: $\mu \equiv \frac{1}{2} \frac{m v_{\perp}^{2}}{B} \rightarrow \frac{1}{2} m v_{\perp}^{2}=\mu B$
$\Rightarrow E_{\text {tot }}=\frac{1}{2} m v_{\|}^{2}+\mu B$
Total energy is conserved: $\frac{d E_{t o t}}{d t}=0$
$\rightarrow \frac{d \mu}{d t}=0 \quad$ The magnetic moment is an (adiabatic) invariant !!!

In the house of mirrors ...

$$
\mu \equiv \frac{1}{2} \frac{m v_{\perp}^{2}}{B}=\text { constant }
$$

So what happens if the particle moves to a region with increasing B ?

- Perpendicular energy must increase ...
- Total energy conserved $\boldsymbol{\rightarrow} v_{\|}$must decrease
- $B_{\text {max }}$ high enough \rightarrow Larmor motion eats up all $v_{\|} \rightarrow$ particle stops
- Now $\boldsymbol{F}_{\|}=-\mu \nabla_{\|} B$ kicks in \rightarrow particle gets reflected
\rightarrow particle gets trapped in the mirror = particle is confined!
This was the idea behind the magnetic bottle.

Magnetic bottle is not plasma-tight...

But we do not get fusion electrons out of our electrical outlets. Why?
There was an 'if' above: if $B_{\max }$ high enough ... What is 'high enough'?

- Let $v_{\|, 0} \& v_{\perp, 0}$ correspond to the mid-bottle, i.e., where $B=B_{\text {min }}$
- At the (potential) turning point, $B=B_{\max }: v_{\|}=0 \& v_{\perp}=v_{\perp}^{\prime}$
- $\mu=$ constant $\rightarrow \frac{v_{\perp, 0}^{2}}{B_{\text {min }}}=\frac{v_{\perp}^{\prime 2}}{B_{\text {max }}}$
- Energy is conserved: $v_{\perp, 0}^{2}+v_{\|, 0}^{2}=v_{\perp}^{\prime 2}$
\rightarrow Particle confined only if $v_{\|, 0}$ is low enough (HW): $\frac{v_{\|, 0}^{2}}{v_{0}^{2}}<1-B_{\min } / B_{\max }$

The concept of a loss cone

- It is common to denote $\frac{v_{\|}^{2}}{v^{2}} \equiv \xi^{2}$, called the pitch of the particle
- Correspondingly, $\theta \equiv \cos ^{-1} \xi$ is the pitch angle.
- The value of ξ in the weak-field region defines the loss cone: $\xi_{0}^{2}>1-B_{\text {min }} / B_{\max }$
 It is clear that for $B_{\max }<\infty$, the magnetic bottle leaks and not all the particles are confined. ©

Things to keep in mind ...

- Many interesting plasmas have their mirrors and loss cones ...
- In a mirror field, particles with 'small' ξ bounce between the mirror points w/ bounce frequency ω_{b}

- Even though in uniform magnetic field particles are stuck with their field line, with additional fields and/or uniformities, the particles will start drifting from their mother-fieldline
- More drifts to come in the second period... ;-)

Adiabatic invariants

Let's take things a little further

What is all the fuss about the magnetic moment? Is it just a fluke of the universe?
Or is there something deep behind its invariance...?

Yes, there is something very fundamental.
And it is not limited just to the magnetic moment...

The idea and use of invariants

Recall basic classical mechanics:

- periodic motion \rightarrow coordinate q and momentum p that 'oscillate'
\rightarrow the action integral $\oint p d q=$ constant of motion (CoM)
Introduce a slow change in the system.
- Slow = compared to the periodic motion, so that $\oint p d q$ can be taken over unperturbed orbit
\rightarrow CoM becomes an adiabatic invariant
In plasma physics, three interesting invariants appear...

The 1st adiabatic invariant

In a magnetic field, the periodic motion always present is the gyration around the field line
$\rightarrow \oint p d q=\oint m v_{\perp} r_{L} d \theta=2 \pi r_{L} m v_{\perp}=2 \pi \frac{m v_{\perp}^{2}}{\Omega}=4 \pi \frac{m}{q} \mu$
\rightarrow Our old friend, the magnetic moment, is the related invariant! ©

Examples of the usefulness of μ

... actually an example of the usefulness of breaking $\mu=$ const...
Magnetic pumping (= adiabatic compression)

- Vary B sinusoidally
\rightarrow mirror points move back-n-forth in z
- Due to $\mu=$ const no net heating $)$
- Include collisions
\rightarrow during compression phase, collisions can transfer some v_{\perp} into $v_{\|}$which does not care about the expansion phase
\rightarrow net heating!

$I(t)=I_{0} \sin \omega t$

Examples of the usefulness of μ

... again an example of the usefulness of breaking $\mu=$ const... Cyclotron heating

- Apply oscillating \boldsymbol{E} field $@ \omega=\Omega$
\rightarrow induced E-field rotates @ $\omega=\Omega$
\rightarrow some particles gyrate in phase with E and get accelerated
- $\omega \ll \Omega$ violated
$\rightarrow \mu \neq$ Const
\rightarrow net energy increase!

The 2nd adiabatic invariant

We have discovered also another periodic motion:

Magnetic mirror

\rightarrow particle with 'small' $v_{\|}$gets trapped and bounces between mirror points at ω_{b}
\rightarrow periodic motion!
$\rightarrow \oint p d q=\oint m v_{\|} d s$, where $d s=$ path length along a field line
The related CoM, the longitudinal invariant J, can be calculated as integral between mirror points: $\mathrm{J}=\int_{a}^{b} v_{\|} d s$.
Lengthy proof \rightarrow skipped here, but note:

- non-uniform B field \rightarrow GC drifts across field lines \rightarrow not exactly periodic
\rightarrow adiabatic invariant!

Application of (non-)invariance of J...

Again take a mirror system.
Now apply $I(t)=I_{0} \sin \omega t \mathrm{w} / \omega \approx \omega_{b}$

\rightarrow mirrors approach/withdraw from each other
\rightarrow particles with right bounce frequency always see an approaching mirror \rightarrow will gain parallel energy (shorter path length)
Net gain possible because $\omega \ll \omega_{b}$ violated
\rightarrow transit-time magnetic pumping

The third adiabatic invariant

Earth's magnetic field:

- Gyration around field line $\rightarrow \mu$
- Bounce motion between (polar) mirrors $\rightarrow \boldsymbol{J}$
- Grad-B drift $\boldsymbol{\rightarrow}$ particles(= GC's) drift around the Earth $\boldsymbol{\rightarrow}$ yet another periodic motion!
\rightarrow constant of motion obtained as an integral of the drift velocity along the $2 \pi R_{\text {path }}$
\rightarrow... do the math ...
\rightarrow total magnetic flux enclosed by the drift surface $=$ const.

