
Lecture 2:
Plasma particles with E and B fields



Today’s Menu

• Magnetized plasma & Larmor radius
• Plasma’s diamagnetism
• Charged particle in a multitude of EM fields: drift motion

• ExB drift, gradient drift, (later: curvature drift, polarization drift, …)

• Concept of a guiding center
• Magnetic moment
• Magnetic mirror & Loss cone
• Adiabatic invariants 1, 2 ,3 and their usefulness
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Plasmas of interest
Not only are the plasmas of our interest (space & fusion) weakly coupled,
they are also magnetized … Why?
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Earth has its own magnetic field
that, in the first approximation, can
be considered a dipole field.

In fusion energy research, the
VERY hot plasma is kept away from
the vessel walls by magnetic field.

B ~ several TB ~ tens of μT



Charged particles in magnetic field
Consider a charge particle (q,m) in uniform magnetic field, = ࡮ .ොࢠ0ܤ

Lorentz force: ݉ ௗ࢜
ௗ௧

= ࢜ݍ × ࡮

݉
௫ݒ݀

ݐ݀
= ଴ܤ௬ݒݍ

݉
௬ݒ݀

ݐ݀
= ଴ܤ௫ݒݍ−

݉ ௗ௩೥
ௗ௧

= 0

Collect the constants into Ω ≡ ,݉/଴ܤݍ Larmor/cyclotron frequency
HWè ௫ݒ = ୄݒ sin Ωݐ with ௬ݒ = ୄݒ cos Ωݐ (or vice versa), ௭ݒ = ∥ݒ
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Larmor motion …
Integrate in time (HW)è ݔ = ௩఼

ஐ
sin Ωݐ & y = − ௩఼

ஐ
cos Ωݐ

è charged particles are gyrating around the magnetic field line on a
circle with the radius defined by their perpendicular velocity and magnetic
field strength:

Larmor radius: rL = ௠௩఼
௤஻

Notice rightaway (effects one-by-one):
• Strong fieldè stick close to field line
• Big charge numberè stick close to field line
• Large perpendicular velocityè large gyro radius
• Large mass è large excursions from the field line
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… and diamagnetism
Particles in plasma thus carry out circular motion around field lines.

A charged particle on a circular path forms a current ring …
Ampere’s law

ߘ × ࡮ = ଴࢐ߤ … recall your course in EM

è additional magnetic field opposite to the background field

è A plasma is diamagnetic (… except in some special cases…), i.e., tends to
reduce the imposed magnetic field
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Concept of magnetized plasma
A plasma is considered magnetized if the Larmor radius is much much
smaller than the scale length L over which the magnetic field changes
appreciably.

rL << L

Note: not exactly uniform B fields…
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Charged particle motion in simple or
’simplish’  fields
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Add a uniform electric field, E = E0
ࡱ = ଴ܧ ොࢠ è simply acceleration in the direction of B
Take E perpendicular to B, e.g., ࡱ = ଴ෝ࢞ܧ
Think what happens now during the gyration period …

Can this be true?
Particle seems to move in direction perpendicular to both E and B fields!!!
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Do the math …
Equations of motion: ௗ௩ೣ

ௗ௧
= Ωݒ௬ + ௤ாబ

௠
ௗ௩೤

ௗ௧
= −Ωݒ௫

HW …
è ௫ݒ = ୄݒ sin Ωݐ

௬ݒ = ୄݒ cos Ωݐ + ாబ
஻బ

Indeed, the particle drifts perpendicular to both fields!
Useful concept: the ’center of gyro motion’, the guiding center, drifts.
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The ExB drift
This guiding-center drift is called the ࡱ × ࡮ drift and it has a very
important role especially in fusion plasma physics.

General (vector) form: ࢜ா௫஻ = ࡮×ࡱ
஻మ

Things to notice:
• The drift does not depend on the particle – everybody drifts in the same

direction with the same velocity!
• This drift is not really specific to just electric field. Any external force, Eè

F/q, would cause such a drift – but this time depending on the charge!
• e.g., gravitational force
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Charged particle motion in non-
uniform magnetic field
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Part I: સܤ ⊥ ࡮ = ଴ܤ ̂ݖ
Choose the axes so that sB ∥ ොݕ
What happens now during one gyration period …

The particle is moving (= drifting) in direction perpendicular to both the B
field and its gradient!!!
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Do the math …

Taylor expand the magnetic field remembering that rL << L

௭ܤ = ௢ܤ + ݕ డ஻೥
డ௬

+ …

௬ܨ = ௭ܤ௫ݒݍ− ݕ ≈ sin)ୄݒݍ− Ωݐ) ௢ܤ + ௅(sinݎ Ωݐ)
௭ܤ߲

ݕ߲
where we have also used the unperturbed orbit to evaluate the force.
Why? -- Ω gives the shortest time scaleè average over one gyro period

< sin Ωݐ > = 0, < (sin Ωݐ)ଶ> = ଵ
ଶ

è < ௬ܨ > =  ± ଵ
ଶ

௅ݎୄݒݍ
డ஻೥
డ௬
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The gradient drift

So there is an effective net force on the particle
èobtain GC drift from the generalized ExB drift:

஼ீݒ =
1
ݍ

ࡲ × ࡮
ଶܤ =

1
ݍ

௬ܨ

଴ܤ
ොݔ = ±

1
଴ܤ2

௅ݎୄݒ
௭ܤ߲

ݕ߲
è The gradient drift in general vector (drift-ܤߘ) form

࢜ఇ஻ = ± ଵ
ଶ

௅ݎୄݒ
ఇ஻×࡮

஻మ

This drift does depend on the charge, as indicated by the ± sign
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Part II:sB ∥ B = B0 z

For axial B-field to have parallel gradient means that the field must have
also a radial component. It can be obtained from ߘ ȉ ࡮ = 0:

Cylindrical symmetryè cylindrical coordinates: ଵ
௥

డ
డ௥

௥ܤݎ + డ஻೥
డ௭

= 0

Assume slowly varying magnetic fieldè

௥ܤݎ = − ∫ ݎ డ஻೥
డ௭

≈ ݎ݀ − ଵ
ଶ

ଶݎ డ஻೥
డ௭

௥
଴ r=0 è ௥ܤ ≈ − ଵ

ଶ
ݎ డ஻೥

డ௭ r=0

Non-uniformity in èݎ gradient drift in poloidal direction. No problem. J
(Radial drift would require non-uniformity in poloidal direction)
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Full Lorentz force in cylindrical coordinates

௥ܨ = ௭ܤఏݒݍ
ఏܨ = ݍ ௥ܤ௭ݒ − ௭ܤ௥ݒ

௭ܨ = ௥ܤఏݒݍ−

• The 1st term in ఏܨ causes a radial drift that forces the particle to follow
the bending field lines

• The new physics is brought about by .௭ܨ
• For simplicity, study a particle ”on” the axis, rGC = 0:

௭ܨ  = ୄݒݍ−
ଵ
ଶ

௅ݎ
డ஻೥
డ௭ r=0
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Gyro motion
around the fieldline



Magnetic force along the field …

௅ݎ = ܤݍ/ୄݒ݉ è ௭ܨ  = − ଵ
ଶ

௠௩఼
మ

஻
డ஻೥
డ௭

= ߤ− డ஻೥
డ௭

where ߤ ≡ ଵ
ଶ

௠௩఼
మ

஻
is the so-called magnetic moment of the particle.

General (vector) form: ∥ࡲ = ܤ∥ߘߤ−
Note:
• μ can be understood as the magnetic moment due to the current loop

created by the gyrating particle (HW)
• The force causes a braking action when particle moves towards higher

field …
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Now we have a bunch of drifts…
What next?
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Magnetic mirrors …
”Magnetic bottle”: first attempt to magnetic confinement …

Linear deviceè ࡮ ≈ ܤ z ݖ …̂

è݉
∥ݒ݀

ݐ݀
= ߤ−

ܤ߲
ݏ߲

Multiply by ∥ݒ = ௗ௦
ௗ௧

è
௠
ଶ

ௗ
ௗ௧

∥ݒ
ଶ = ߤ− డ஻

డ௦
డ௦
డ௧

= ߤ− ௗ஻
ௗ௧

Note: ܤ does not depend on time, but a particle sees it varying ’in time’.
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s = distance
along a field line ࢞ࢇ࢓࡮

࢔࢏࢓࡮



… and invariance of μ

è
ௗ
ௗ௧

ଵ
ଶ

∥ݒ݉
ଶ + ܤߤ = ܤ ௗఓ

ௗ௧

Recall the definition: ߤ ≡ ଵ
ଶ

௠௩఼
మ

஻
è

ଵ
ଶ

ୄݒ݉
ଶ = ܤߤ

è ௧௢௧ܧ = ଵ
ଶ

∥ݒ݉
ଶ + ܤߤ

Total energy is conserved: ௗா೟೚೟
ௗ௧

= 0

è
ௗఓ
ௗ௧

= 0 The magnetic moment is an (adiabatic) invariant !!!
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In the house of mirrors …

ߤ ≡ ଵ
ଶ

௠௩఼
మ

஻
= constant

So what happens if the particle moves to a region with increasing ?ܤ
• Perpendicular energy must increase …
• Total energy conservedè ∥ݒ must decrease
• ௠௔௫ܤ high enoughè Larmor motion eats up all ∥ݒ è particle stops
• Now ∥ࡲ = ܤ∥ߘߤ− kicks inè particle gets reflected
è particle gets trapped in the mirror = particle is confined!

This was the idea behind the magnetic bottle.
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Magnetic bottle is not plasma-tight…

But we do not get fusion electrons out of our electrical outlets. Why?
There was an ’if’ above: if ௠௔௫ܤ high enough … What is ’high enough’?
• Let ଴,∥ݒ & ଴,ୄݒ correspond to the mid-bottle, i.e., where ܤ = ௠௜௡ܤ

• At the (potential) turning point, ܤ = :௠௔௫ܤ ∥ݒ = 0 & ୄݒ = ୄݒ
ᇱ

• ߤ = constant è
௩఼,బ

మ

஻೘೔೙
= ௩఼

ᇲమ

஻೘ೌೣ

• Energy is conserved: ଴,ୄݒ
ଶ ଴,∥ݒ+

ଶ = ୄݒ
ᇱଶ

è Particle confined only if ଴,∥ݒ is low enough (HW):
௩∥,బ

మ

௩బ
మ < 1 − ௠௔௫ܤ/௠௜௡ܤ
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The concept of a loss cone

• It is common to denote ௩∥
మ

௩మ ≡ ଶ, calledߦ the
pitch of the particle

• Correspondingly, ߠ ≡ coିݏଵ ߦ is the pitch
angle.

• The value of ߦ in the weak-field region
defines the loss cone: ଴ߦ

ଶ > 1 − ௠௔௫ܤ/௠௜௡ܤ

It is clear that for ௠௔௫ܤ < ∞, the magnetic bottle
leaks and not all the particles are confined. L
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Things to keep in mind …

• Many interesting plasmas have their mirrors and
loss cones …

• In a mirror field, particles with ’small’ ߦ bounce
between the mirror points w/ bounce frequency ߱௕

• Even though in uniform magnetic field particles are
stuck with their field line, with additional fields
and/or uniformities, the particles will start drifting
from their mother-fieldline

• More drifts to come in the second period… ;-)
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Adiabatic invariants
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Let’s take things a little further …

What is all the fuss about the magnetic moment?
Is it just a fluke of the universe?
Or is there something deep behind its invariance…?

Yes, there is something very fundamental.
And it is not limited just to the magnetic moment…
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The idea and use of invariants

Recall basic classical mechanics:
• periodic motionè coordinate ݍ and momentum ݌ that ’oscillate’

è the action integral ∮ ݌ ݍ݀ = 
 constant of motion (CoM)

Introduce a slow change in the system.
- Slow = compared to the periodic motion, so that ∮ ݌  ݍ݀

 can be taken over unperturbed orbit

èCoM becomes an adiabatic invariant
In plasma physics, three interesting invariants appear…
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The 1st adiabatic invariant

In a magnetic field, the periodic motion always present is the gyration
around the field line

è∮ ݌ ݍ݀ = 
 ∮ ߠ௅݀ݎୄݒ݉ = ୄݒ௅݉ݎߨ2 = ߨ2 ௠௩఼

మ

ஐ
 

 = ߨ4 ௠
௤

ߤ

èOur old friend, the magnetic moment, is the related invariant! J



Examples of the usefulness of ߤ
… actually an example of the usefulness of breaking …const=ߤ
Magnetic pumping (= adiabatic compression)
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• Vary B sinusoidally
è mirror points move back-n-forth in z
• Due to const=ߤ no net heating L
• Include collisions
è during compression phase, collisions
can transfer some ୄݒ into ∥ݒ which does
not care about the expansion phase
è net heating! (ݐ)ܫ  = ଴ܫ  sin  ݐ߱

z



Examples of the usefulness of ߤ
… again an example of the usefulness of breaking …const=ߤ
Cyclotron heating
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• Apply oscillating E field @߱ = Ω
èinduced E-field rotates @ ߱ = Ω
è some particles gyrate in phase with E and get
accelerated
• ߱ ≪ Ω violated
è ߤ ≠const
è net energy increase !



The 2nd adiabatic invariant
We have discovered also another periodic motion:
Magnetic mirror
è particle with ’small’ v∥ gets trapped and bounces between mirror points at ߱௕

è periodic motion!

è ∮ ݍ݀ ݌ = 
 ∮  ݏ݀∥ݒ݉

 , where ݏ݀ = path length along a field line

The related CoM, the longitudinal invariant J, can be calculated as
integral between mirror points: J = ∫ ௕ ݏ݀∥ݒ

௔ .
Lengthy proofè skipped here, but note:

- non-uniform B fieldè GC drifts across field linesè not exactly periodic
è adiabatic invariant !



Application of (non-)invariance of J …

Again take a mirror system.
Now apply (ݐ)ܫ  = ଴ܫ  sin /w ݐ߱ ߱ ≈ ߱௕

è mirrors approach/withdraw from each other
è particles with right bounce frequency always see an approaching
mirrorè will gain parallel energy (shorter path length)
Net gain possible because ߱ ≪ ߱௕ violated
è transit-time magnetic pumping
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The third adiabatic invariant
Earth’s magnetic field:
• Gyration around field lineè ߤ
• Bounce motion between (polar) mirrorsè J
• Grad-B driftè particles(= GC’s) drift around the Earthè yet another

periodic motion!
è constant of motion obtained as an integral of the drift velocity along
the ௣௔௧௛ܴ ߨ2

è… do the math …
è total magnetic flux enclosed by the drift surface = const.
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