Lecture 2:
Plasma particles with E and B fields




Magnetized plasma & Larmor radius
Plasma’s diamagnetism

Charged particle in a multitude of EM fields: drift motion
« EXB drift, gradient drift, (later: curvature drift, polarization drift, ...)

o Concept of a guiding center

« Magnetic moment

e Magnetic mirror & L0OSS cone

e Adiabatic invariants 1, 2 ,3 and their usefulness
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Plasmas of interest

Not only are the plasmas of our interest (space & fusion) weakly coupled,
they are also magnetized ... Why?
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Earth has its own magnetic field In fusion energy research, the
that, in the first approximation, can VERY hot plasma is kept away from
be considered a dipole field. the vessel walls by magnetic field.
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Charged particles in magnetic field

Consider a charge particle (g,m) in uniform magnetic field, B = B,Z.

d
Lorentz force: md—j = qv < B

dv,

P m——= qvybo
{/ T 3 \ dvy

| > © m—— = —qv,B,

@

dt

~p dv,
2 m—=20
dt

Collect the constants into Q = gB,/m, Larmor/cyclotron frequency
HW = v, = v, sinQt with v, = v, cosQt (or vice versa), v, = v
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Integrate in time (HW) & x = ->sinQt & y = — = cos Q¢

=» charged particles are gyrating around the magnetic field line on a
circle with the radius defined by their perpendicular velocity and magnetic
field strength:

Larmor radius: 1, = =% @

Magnetic

a5 LR
Notice rightaway (effects one-by-one): ,T--fi{ 1%
o Strong field = stick close to field line e |;\\/J _@9:&'“3"
* Big charge number = stick close to field line N bx,zf.;
« Large perpendicular velocity =» large gyro radius AN :}%@999}3
o

o Large mass = large excursions from the field line
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Particles in plasma thus carry out circular motion around field lines.

A charged particle on a circular path forms a current ring .

I

Ampere’s law \
V x B = poj ... recall your course in EM -~
T

=» additional magnetic field opposite to the background field

= A plasma is diamagnetic (... except in some special cases...), I.€., tends to
reduce the imposed magnetic field
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Concept of magnetized plasma

A plasma is considered magnetized if the Larmor radius is much much
smaller than the scale length L over which the magnetic field changes

appreciably.

o <<L

Note: not exactly uniform B fields...

,, Aalto University
School of Science 14.9.2020

7



Charged particle motion in simple or
'simplish’ fields




Add a uniform electric field, E = E,

E = E, Z = simply acceleration in the direction of B

Take E perpendicular to B, e.g., E = EyX

Think what happens now during the gyration period ...

@ EFE — @

@ Y o

"
Can this be true?
Particle seems to move in direction perpendicular to both E and B fields!!!
PP s
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Do the math ...

. ] d E
Equations of motion: =2 = Qu,, + 1=
dt m

dv GUIDING

—dy = —QOv, CENTER

HW ...
= v, = v, SINQt

E
= v, cost + =
By

Uy

ION ELECTRON

Indeed, the particle drifts perpendicular to both fields!
Useful concept: the 'center of gyro motion’, the guiding center, drifts.
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This guiding-center drift is called the E x B drift and it has a very
Important role especially in fusion plasma physics.

ExB
General (vector) form: vg,p = =z

Things to notice:

* The drift does not depend on the particle — everybody drifts in the same
direction with the same velocity!

« This drift is not really specific to just electric field. Any external force, E =
F/q, would cause such a drift — but this time depending on the charge!

e e.g., gravitational force
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Charged particle motion in non-
uniform magnetic field




Partl: VB LB =B,z

Choose the axes so that VB || y
What happens now during one gyration period ...

The particle is moving (= drifting) in direction perpendicular to both the B
field and its gradient!!!
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Taylor expand the magnetic field remembering that r, << L
9B,

BZ: B0+yay

+

0B,
F, = —qu,B,(y) = —qv,(sinflt) B, + r (sin Qt) 3y
where we have also used the unperturbed orbit to evaluate the force.

Why? -- Q gives the shortest time scale =» average over one gyro period

. : 1 3B
<sinQt>=0, < (smﬂt)2>:5 2 <F,>= qvlrL ayz
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So there is an effective net force on the particle
=» obtain GC drift from the generalized ExB drift:

_lFXB_leA__I_l 0B,
vec = q B> qBox - _ZBOULTL dy
=» The gradient drift (vB-drift) in general vector form
1 BxVB
Vypp = £V, —

This drift does depend on the charge, as indicated by the * sign
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For axial B-field to have parallel gradient means that the field must have

also a radial component. It can be obtained from V - B = O:
0B, __

Cylindrical symmetry =» cylindrical coordinates: %% (rB,) + — = 0
Assume slowly varying magnetic field =

—f raBzdr z__r [aBZrO __T[aBZ
Non-unlformlty in r =» gradient drift in poloidal direction. No problem. ©
(Radial drift would require non-uniformity in poloidal direction)
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Full Lorentz force in cylindrical coordinates

_ Gyro motion

 The 1stterm in Fy causes a radial drift that forces the particle to follow
the bending field lines

 The new physics is brought about by E,.
» For simplicity, study a particle "on” the axis, rg- = O:

F, = qvl‘TL[aBZ]ro
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rp=mv,/qB=» F, = _lmvl [aBz] _ [aBZ

2
where u = =2 is the so-called magnetic moment of the particle.
General (vector) form: F, = —uV,B
Note:

e U can be understood as the magnetic moment due to the current loop
created by the gyrating particle (HW)

 The force causes a braking action when particle moves towards higher
field ...
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Now we have a bunch of drifts...
What next?




Magnetic mirrors ...

"Magnetic bottle™: first attempt to magnetic confinement ...

Linear device = B = B(z)Z ...

> dvy 0B s =distance
m—— = —p— L
dt s along a field line
MUItlpIy by U” —
md oy _ 0Bds _ dB
> Zdt(v") Hasae — M

Note: B does not depend on time, but a particle sees it varying ’in time'.
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... and Invariance of u

> i(%mv”z +uB) =p#

dt dt
2
Recall the definition: 1 = -™% 3 ~mv? = uB
> E = %mvuz + uB
Total energy is conserved: ot —

> % =0 The magnetic moment is an (adiabatic) invariant !!!
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In the house of mirrors ...

1 mv?

2 B
So what happens if the particle moves to a region with increasing B?

* Perpendicular energy must increase ...
« Total energy conserved =» v, must decrease

= constant

B,ax high enough =» Larmor motion eats up all v, =» particle stops
 Now F, = —uV,B kicks in =» particle gets reflected
=» particle gets trapped in the mirror = particle is confined!

This was the idea behind the magnetic bottle.
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But we do not get fusion electrons out of our electrical outlets. Why?

There was an ’if’ above: if B,,,, high enough ... What s ’high enough’?
* Lety,, & v, correspond to the mid-bottle, i.e., where B = B,;,,

At the (potential) turning point, B = Bq,: vy = 0& v, = v}
2

Vio
e 4 =constant = —— =
min Bmax

« Energy is conserved: v2 ,+v}, = v}2

!/
‘U_LZ

2
> Particle confined only if v , is low enough (HW): 2 < 1 — Bp.in/Brax

O
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The concept of aloss cone

e Itis common to denote i L = ¢2, called the
pitch of the particle

« Correspondingly, 8 = cos ™! £ is the pitch
angle.

e The value of ¢ in the weak-field region Vi
defines the loss cone: 5 > 1 — B,,;,,/B,...

It is clear that for B,,,, < o, the magnetic bottle
leaks and not all the particles are confined. ®
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Things to keep in mind ...

« Many interesting plasmas have their mirrors and
loss cones ...

« In a mirror field, particles with 'small’ ¢ bounce
between the mirror points w/ bounce frequency w,

« Even though in uniform magnetic field particles are e
stuck with their field line, with additional fields 2 L
and/or uniformities, the particles will start drifting &\{/ ol Y

from their mother-fieldline
* More drifts to come in the second period... ;-)
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Adiabatic invariants




Let’s take things a little further ...

What is all the fuss about the magnetic moment?
Is it just a fluke of the universe?
Or is there something deep behind its invariance...?

Yes, there is something very fundamental.
And it is not limited just to the magnetic moment...
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Recall basic classical mechanics:
e periodic motion =» coordinate g and momentum p that 'oscillate’
=> the action integral ¢ p dqg = constant of motion (CoM)

Introduce a slow change in the system.
- Slow = compared to the periodic motion, so that ¢ p dq can be taken over unperturbed orbit

=» CoM becomes an adiabatic invariant
In plasma physics, three interesting invariants appeat...
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The 1st adiabatic invariant

In a magnetic field, the periodic motion always present is the gyration
around the field line

2
2> épdqg =¢pmv,r.do =2nr,mv, = 27Tm;:l = 471%;1

=>» Our old friend, the magnetic moment, is the related invariant! ©
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Examples of the usefulness of u

... actually an example of the usefulness of breaking u=const...
Magnetic pumping (= adiabatic compression)

e Vary B sinusoidally

=» mirror points move back-n-forth in z
* Due to u=const no net heating ®
 Include collisions

=» during compression phase, collisions
can transfer some v, into v, which does
not care about the expansion phase

= net heating! I(t) = lpsinwt

(x]
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Examples of the usefulness of u

... again an example of the usefulness of breaking u=const...

Cyclotron heating o /
Wave Propagation
[~

* Apply oscillating E field @w = Q
=» induced E-field rotates @ w =
=» some particles gyrate in phase with E and get Dt
accelerated /
e w K violated

=>» u #const

=> net energy increase !

Sense of Wave Field
Rotatonto a
Stationary Observer
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The 2nd adiabatic invariant

We have discovered also another periodic motion:

Magnetic mirror

=> particle with 'small’ v gets trapped and bounces between mirror points at w,,
=» periodic motion!

=2 ¢ p dq = $ myyds, where ds = path length along a field line
The related CoM, the longitudinal invariant J, can be calculated as
integral between mirror points: ] = f: vds .

Lengthy proof =» skipped here, but note:

- non-uniform B field =» GC drifts across field lines = not exactly periodic
=» adiabatic invariant !
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Application of (non-)invariance of J ...

Again take a mirror system.
Now apply I(t) = IsinwtwW/ w = wy

=>» mirrors approach/withdraw from each other

=>» particles with right bounce frequency always see an approaching
mirror = will gain parallel energy (shorter path length)

Net gain possible because w < w; violated
=» transit-time magnetic pumping
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The third adiabatic invariant

Earth’s magnetic field:
e Gyration around field line = u
 Bounce motion between (polar) mirrors = J

o Grad-B drift = particles(= GC’s) drift around the Earth =» yet another
periodic motion!

=» constant of motion obtained as an integral of the drift velocity along
the 2T Rpath

=>» ... do the math ...
=» total magnetic flux enclosed by the drift surface = const.
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