Probability primer

Kaie Kubjas, 15.09.2020

Agenda

- First half: Group work in breakout rooms
- MyCourses/Worksheets: Worksheet 2 according to your breakout room number
- Copy and discuss your questions
- Discuss questions prepared by me
- The group can decide whether to write down solutions
- Break
- Second half: Lecture on connecting probability and algebra we have studied so far

Last time

Def: Let $S \subset \mathbb{K}[p]$ be a set of polynomials. The variety defined by S is

$$
V(S)=\left\{a \in \mathbb{K}^{r}: f(a)=0 \quad \forall f \in S\right\}
$$

Def: Let $W \subseteq \mathbb{K}^{r}$. The vanishing ideal of W is

$$
I(W)=\{f \in \mathbb{K}[p]: f(a)=0 \quad \forall a \in W\}
$$

Def: Let S be a set of polynomials. The ideal generated by S is

$$
\langle S\rangle=\left\{\sum_{i=1}^{k} h_{i} f_{i}: f_{i} \in S, h_{i} \in \mathbb{K}[p]\right\} .
$$

Binomial random variables

- Consider the polynomial map $\phi: \mathbb{C} \rightarrow \mathbb{C}^{r+1}$ whose i th coordinate function is

$$
\phi_{i}(t)=\binom{r}{i} t^{i}(1-t)^{r-i}, \quad i=0,1, \ldots, r
$$

- Let $\theta \in[0,1]$ and let X be the discrete random variable that counts the number of heads in r coin tosses where the coin shows heads with the probability θ. In other words, $X \sim \operatorname{Bin}(r, \theta)$.
- The value $\phi_{i}(\theta)$ is the probability $P(X=i)$.
- The vector $\phi(\theta)$ is the distribution of X.

Implicitization problem

- Goal: Describe the image of the real interval $[0,1]$ under the map ϕ.
- Simplified goal: Describe $\phi(\mathbb{C})$.

Question 1: Find a finite set of polynomials that generate $I(\phi(\mathbb{C}))$.

- If $W=\phi\left(\mathbb{K}^{d}\right)$ for some rational map ϕ, then finding a finite set of polynomials that generate $I(W)$ is called an implicitization problem.
- A rational map is a map $\phi: \mathbb{K}^{d} \rightarrow \mathbb{K}^{r}$, where $\phi_{i}=f_{i} / g_{i}$ and $f_{i}, g_{i} \in \mathbb{K}\left[t_{1}, \ldots, t_{d}\right]$.

Question 2: Is $\phi(\mathbb{C})$ a variety?

Image of parametrization

Theorem: Let \mathbb{K} be algebraically closed, let $V \subseteq \mathbb{K}^{d}$ be a variety, and let ϕ be a rational map $\phi: V \rightarrow \mathbb{K}^{r}$. Then there is a finite sequence of varieties $W_{1} \supset W_{2} \supset \cdots \supset W_{k}$ in \mathbb{K}^{r} such that $\phi(V)=W_{1} \backslash\left(W_{2} \backslash\left(\cdots\left(\backslash W_{k}\right) \cdots\right)\right)$.

Example 1: $\phi: \mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)$
Example 2: $\phi: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto t^{2}$
\Longrightarrow The theorem holds only when \mathbb{K} is algebraically closed.

Zariski closure

- Let \mathbb{K} be a field and let $W \subseteq \mathbb{K}^{r}$ be a set.

Prop: The set $V(I(W))$ is called the Zariski closure of W. It is the smallest variety containing W.

- A set W is called Zariski closed if it is a variety.
- Zariski closed sets are also closed in the standard Euclidean topology.

Question 1: Let $W \subset \mathbb{R}^{2}$ be the p_{1}-axis with the origin $(0,0)$ removed. What is the Zariski closure of W ?

Question 2: What is the Zariski closure of $[0,1]$ inside \mathbb{R} ?

Graph of a map

- Let $\phi: \mathbb{K}^{d} \rightarrow \mathbb{K}^{r}$ be a polynomial map.
- The graph of the map is the set of points

$$
\Gamma_{\phi}=\left\{(\phi(\theta), \theta): \theta \in \mathbb{K}^{d}\right\} \subset \mathbb{K}^{r+d} .
$$

- If \mathbb{K} is an infinite field, the vanishing ideal of the graph is

$$
I\left(\Gamma_{\phi}\right)=\left\langle p_{1}-\phi_{1}(q), \ldots, p_{r}-\phi_{r}(q)\right\rangle \subseteq \mathbb{K}\left[p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{d}\right] .
$$

Sum of ideals

- Define the sum of two ideals $I, J \subseteq \mathbb{K}[p]$ as

$$
I+J:=\{f+g: f \in I \text { and } g \in J\} .
$$

- If $I=\langle\mathscr{F}\rangle$ and $J=\langle\mathscr{G}\rangle$, then $I+J=\langle\mathscr{F} \cup \mathscr{G}\rangle$.

Implicitization problem

Prop: Let $I \subseteq \mathbb{K}\left[q_{1}, \ldots, q_{d}\right]$ be the vanishing ideal of a variety $V \subseteq \mathbb{K}^{d}$. Let $\phi: \mathbb{K}^{d} \rightarrow \mathbb{K}^{r}$ be a polynomial map. Then the vanishing ideal of the Zariski closure is the elimination ideal

$$
I(\phi(V))=\left(I+I\left(\Gamma_{\Phi}\right)\right) \cap \mathbb{K}\left[p_{1}, \ldots, p_{r}\right] .
$$

Computations

Macaulay2, version 1.14
--loading configuration for package "FourTiTwo" from file /Users/kubjask1/Librar \rightarrow --loading configuration for package "Topcom" from file /Users/kubjask1/Library/A \rightarrow with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone,
Truncations

i1 : $\mathbf{R}=\mathbf{Q} \mathbf{Q}[\mathbf{t}, \mathbf{p} \mathbf{0}, \mathrm{p} 1, \mathrm{p} 2]$

$01=R$
01 : PolynomialRing
i2 : J = ideal (p0-(1-t)^2,p1-2*t*(1-t),p2-t^2)
$02=\operatorname{ideal}\left(-t^{2}+2 t+p 0-1,2 t^{2}-2 t+p 1,-t^{2}+p 2\right)$
02 : Ideal of R
i3 : K = eliminate(\mathbf{t}, \mathbf{J})
$03=$ ideal $\left(\mathrm{p} 0+\mathrm{p} 1+\mathrm{p} 2-1, \mathrm{p} 1^{2}+4 \mathrm{p} 1 * \mathrm{p} 2+4 \mathrm{p} 2^{2}-4 \mathrm{p} 2\right)$
G3 : Ideal of R
14 :

Behind the scenes a Gröbner basis is used for elimination

Binomial random variables

Is $\phi(\mathbb{C})=V\left(p_{0}+p_{1}+p_{2}-1,4 p_{0} p_{2}-p_{1}^{2}\right)$?

- $p_{0}=1-p_{1}-p_{2}$
- $4 p_{0} p_{2}-p_{1}^{2}=0 \quad \Longleftrightarrow \quad 4\left(1-p_{1}-p_{2}\right) p_{2}-p_{1}^{2}=0 \quad \Longleftrightarrow \quad p_{1}^{2}+4 p_{2} p_{1}+4 p_{2}^{2}-4 p_{2}=0$
- Quadratic formula: $p_{1}=-2 p_{2} \pm 2 \sqrt{p_{2}}$
- Substitution: $p_{0}=1+p_{2} \mp 2 \sqrt{p_{2}}$
$\Longrightarrow V\left(p_{0}+p_{1}+p_{2}-1,4 p_{0} p_{2}-p_{1}^{2}\right)=\left\{\left(1+p_{2} \mp 2 \sqrt{p_{2}},-2 p_{2} \pm 2 \sqrt{p_{2}}, p_{2}\right): p_{2} \in \mathbb{C}\right\}$
- $\phi\left(\sqrt{p_{2}}\right)=\left(1+p_{2}-2 \sqrt{p_{2}},-2 p_{2}+2 \sqrt{p_{2}}, p_{2}\right), \phi\left(-\sqrt{p_{2}}\right)=\left(1+p_{2}+2 \sqrt{p_{2}},-2 p_{2}-2 \sqrt{p_{2}}, p_{2}\right)$
$\Longrightarrow \phi(\mathbb{C})=V\left(p_{0}+p_{1}+p_{2}-1,4 p_{0} p_{2}-p_{1}^{2}\right)$

Binomial random variables

- What is $\phi([0,1])$? (Extra homework)
- It is a semialgebraic set: It is a solution set of a system of polynomial equations and inequalities.
- Describing $\phi([0,1])$ is in general much more difficult than describing $\phi(\mathbb{C})$.
- Algebraic geometry vs real algebraic geometry.

Implicitization

Prop: Let $I \subseteq \mathbb{K}\left[q_{1}, \ldots, q_{d}\right]$ be the vanishing ideal of a variety $V \subseteq \mathbb{K}^{d}$. Let $\phi: \mathbb{K}^{d} \rightarrow \mathbb{K}^{r}$ be a rational map, with coordinate functions $\phi_{i}=f_{i} / g_{i}$. Then the vanishing ideal of the Zariski closure is the elimination ideal

$$
I(\phi(V))=\left(I+\left\langle g_{1} p_{1}-f_{1}, \ldots, g_{r} p_{r}-f_{r}, z g_{1} \cdots g_{r}-1\right\rangle\right) \cap \mathbb{K}\left[p_{1}, \ldots, p_{r}\right]
$$

- The ideal in the parentheses belongs to the ring $\mathbb{K}[p, q, z]$, where z is an extra indeterminate.

Next time: Conditional independence

