CS-E4710 Machine Learning: Supervised Methods

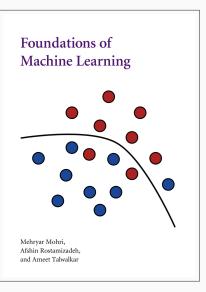
Lecture 3: Learning with infinite hypothesis classes

Juho Rousu

September 22, 2020

Department of Computer Science Aalto University

• Mohri et al: chapter 3



• A class *C* is PAC-learnable, if there exist an algorithm *A* that given a training sample *S* outputs a hypothesis *h_S* that has generalization error satisfying

$$Pr(R(h_S) \le \epsilon) \ge 1 - \delta$$

• for any distribution D, for arbitrary $\epsilon, \delta > 0$ and sample size m = |S|that grows at polynomially in $1/\epsilon, 1/\delta$

Recall: PAC learning of a finite hypothesis class

 Sample complexity bound relying on the size of the hypothesis class (Mohri et al, 2012): Pr(R(h_s) ≤ ε) ≥ 1 − δ if

$$m \geq rac{1}{\epsilon}(\log(|\mathcal{H}|) + \log(rac{1}{\delta}))$$

• An equivalent generalization error bound:

$$R(h) \leq rac{1}{m}(\log(|\mathcal{H}|) + \log(rac{1}{\delta}))$$

- Holds for any finite hypothesis class assuming there is a consistent hypothesis
- Extra term compared to the "family car" example is the term $\frac{1}{\epsilon}(\log(|\mathcal{H}|))$
- $\bullet\,$ The more hypotheses there are in $|\mathcal{H}|,$ the more training examples are needed

- The size of the hypothesis class is a useful measure of complexity for **finite** hypothesis classes (e.g boolean formulae)
- However, most classifers used in practise rely on infinite hypothesis classes, e.g.
 - $\mathcal{H} = axis-aligned$ rectangles in \mathbb{R}^2 (our "family car"!)
 - $\mathcal{H} =$ hyperplanes in \mathbb{R}^d (e.g. Support vector machines)
 - \mathcal{H} = neural networks with continuous input variables
- Need better tools to analyze these cases

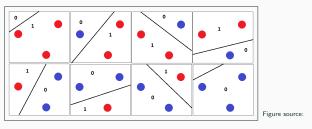
Vapnik-Chervonenkis dimension

Intuition

- VC dimension can be understood as measuring the capacity of a hypothesis class to adapt to different concepts
- It can be understood through the following thought experiment:
 - Pick a fixed hypothesis class \mathcal{H} , e.g. axis-aligned rectangles in R^2
 - Let as enumerate all possible labelings of a training set of size m:
 𝒴^m = {y₁, y₂, ..., y_{2^m}}, where y_j = (y_{j1}, ..., y_{jm}), and y_{ij} ∈ {0, 1} is the label of *i*'th example in the *j*'th labeling
 - We are allowed to freely choose a distribution *D* generating the inputs and to generate the input data *x*₁,..., *x*_m
 - VCdim(H) = size of the largest training set that we can find a consistent classifier for all labelings in Y^m
- Intuitively:
 - low VCdim \implies easy to learn, low sample complexity
 - high VCdim \implies hard to learn, high sample complexity
 - infinite VCdim \implies cannot learn in PAC framework

Shattering

- The underlying concept in VC dimension is shattering
- Given a set of points $S = \{x_1, \ldots, x_m\}$ and a fixed class of functions $\mathcal H$
- \mathcal{H} is said to shatter S if for any possible partition of S into positive S_+ and negative subset S_- we can find a hypothesis for which h(x) = 1 if and only if $x \in S_+$

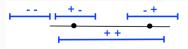


https://datascience.stackexchange.com

- How to show that $VCdim(\mathcal{H}) = d$ for a hypothesis class
- We need to show that
 - There exists a set of inputs of size d that can be shattered by hypothesis in H (i.e. we can pick the set of inputs): VCdim(H) ≥ d
 - There does not exist any set of size d + 1 that can be shattered (i.e. need to show a general property): VCdim(H) < d + 1

Example: intervals on a real line

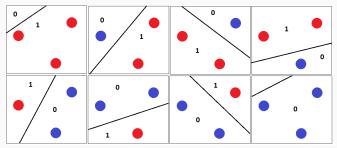
- Let the hypothesis class be intervals in ${\cal R}$
- Each hypothesis is defined by two parameters b_h, e_h ∈ ℝ: the beginning and end of the interval, h(x) = 1_{bh≤x≤eh}
- We can shatter any set of two points by changing the end points of the interval:



• We cannot shatter a three point set, as the middle point cannot be excluded while the left-hand and right-hand side points are included

We conclude that VC dimension for real intervals = 2

 A hypothesis class of lines h(x) = ax + b shatters a set of three points ℝ².



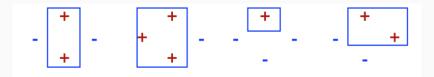
 $\bullet\,$ We conclude that VC dimension is ≥ 3

Lines in \mathbb{R}^2

Four points cannot be shattered by lines in \mathbb{R}^2 :

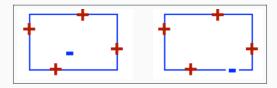
- Three are only two possible configurations of four points in \mathbb{R}^2 :
 - 1. All four points reside on the convex hull
 - 2. Three points form the convex hull and one is in interior
- In the first case (left), we cannot draw a line separating the top and bottom points from the left-and and right-hand side points
- In the second case, we cannot separate the interior point from the points on the convex hull with a line
- The two examples are sufficient to show that VCdim = 3

- What about our "family car" example?
- With axis aligned rectangles we can shatter a set of four points (picture shows 4 of the 16 configurations)
- This implies $VCdim(\mathcal{H}) \geq 4$



VC-dimension of axis-aligned rectangles

- For five distinct points, consider the minimum bounding box of the points
- There are two possible configurations:
 - 1. There are one or more points in the interior of the box: then one cannot include the points on the boundary and exclude the points in the interior
 - 2. At least one of the edges contains two points: in this case we can pick either of the two points and verify that this point cannot be excluded while all the other points are included
- Thus by the two examples we have established that $VCdim(\mathcal{H}) = 4$



• Formally $VCdim(\mathcal{H})$ is defined through the growth function

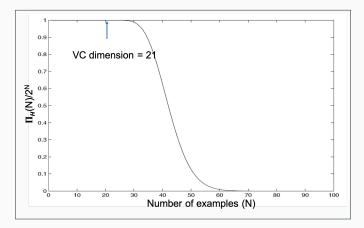
$$\Pi_{\mathcal{H}}(m) = \max_{\{x_1,\ldots,x_m\}\subset X} |\{(h(x_1),\ldots,h(x_m)):h\in\mathcal{H}\}|$$

- The growth function gives the maximum number of unique labelings the hypothesis class \mathcal{H} can provide for an arbitrary set of input points
- The maximum of the growth function is 2^m for a set of m examples
- Vapnik-Chervonenkis dimension is then

$$VCdim(\mathcal{H}) = \max_{m} \{m | \Pi_{\mathcal{H}}(m) = 2^{m}\}$$

Visualization

- The ratio of the growth function $\Pi_{\mathcal{H}}(m)$ to the maximum number of labelings of a set of size m is shown
- Hypothesis class is 20-dimensional hyperplanes (VC dimension = 21)

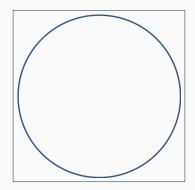


- A finite hypothesis class have VC dimension $VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$
- To see this:
 - Consider a set of *m* examples *S* = {*x*₁,...,*x_m*}
 - This set can be labeled 2^m different ways, by choosing the labels $y_i \in \{0, 1\}$ independently
 - Each hypothesis in $h \in \mathcal{H}$ fixes one labeling $(h(x_1), \ldots, h(x_m))$
 - All hypotheses in ${\mathcal H}$ can provide at most $|{\mathcal H}|$ different labelings in total
 - If $|\mathcal{H}| < 2^m$ we cannot shatter $S \implies$ we cannot shatter a set of size $m > \log_2 |\mathcal{H}|$

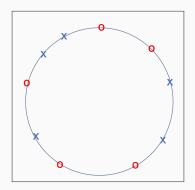
Examples of classes with a finite VC dimension:

- convex *d*-polygons in ℝ²: VCdim = 2d + 1 (e.g. for general, not restricted to axis-aligned, rectangles VCdim = 5)
- hyperplanes in \mathbb{R}^d : VCdim = d + 1 (e.g. single neural unit, linear SVM)
- neural networks: *VCdim* = |*E*| log |*E*|| where *E* is the set of edges in the networks (for *sign* activation function)
- boolean monomials of *d* variables: *VCdim* = *d* (Aldo and sports example)
- arbitrary boolean formulae of d variables: $VCdim = 2^d$

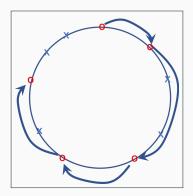
- Let our hypothesis class be convex polygons in \mathbb{R}^2 without restriction of number of vertices d
- Let us draw an arbitrary circle on \mathbb{R}^2 the distribution D will be concentrated on the circumference of the circle
 - This is a difficult distribution for learning polygons we choose it on purpose



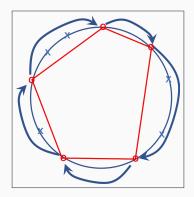
- Let us consider a set of *m* points with arbitrary binary labels
- For any *m*, let us position *m* points on the circumference of the circle
 - simulating drawing the inputs from the distribution D



- Start from an arbitrary positive point (red circles)
- Traverse the circumference clockwise skipping all negative points and stopping and positive points



- Connect adjacent positive points with an edge
- This forms a *p*-polygon inside the circle, where is the number of positive data points



- Define h(x) = +1 for points inside the polygon and h(x) = 0 outside
- Each of the 2^m labelings of m examples gives us a p-polygon that includes the p positive points in that labeling and excludes the negative points ⇒ we can shatter a set of size m: VCdim(H) ≥ m
- Since *m* was arbitrary, we can grow it without limit $VCdim(\mathcal{H}) = \infty$

(Mohri, 2012) Let H be a family of functions taking values in {-1,+1} with VC-dimension d. Then for any δ > 0, with probability at least 1 − δ the following holds for all h ∈ H:

$$R(h) \leq \hat{R}(h) + \sqrt{rac{2\log(em/d)}{m/d}} + \sqrt{rac{\log(1/\delta)}{2m}}$$

- $e \approx 2.71828$ is the base of the natural logarithm
- The bound reveals that the critical quantity is *m*/*d*, i.e. the number of examples divided by the VC-dimension
- Manifestation of the Occam's razor principle: to justify an increase in the complexity, we need reciprocally more data

Rademacher complexity

- Consider a set of training examples $S_0 = \{(x_i, y_i)\}_{i=1}^m$
- Generate *M* new datasets S_1, \ldots, S_M from S_0 by randomly drawing a new label $\sigma \in \mathcal{Y}$ for each training example in S_0

$$S_k = \{(x_i, \sigma_{ik})\}_{i=1}^m$$

• Train a classifier h_k minimizing the empirical risk on training set S_k , record its empirical risk

$$\hat{R}(h_k) = rac{1}{m} \sum_{i=1}^m \mathbf{1}_{h_k(x_i) \neq \sigma_{ik}}$$

• Compute the average empirical risk over all datasets: $\bar{\epsilon} = \frac{1}{M} \sum_{k=1}^{M} \hat{R}(h_k)$ • Observe the quantity

$$\hat{\mathcal{R}} = \frac{1}{2} - \bar{\epsilon}$$

- We have $\hat{\mathcal{R}} = 0$ when $\bar{\epsilon} = 0.5$, that is when the predictions correspond to random coin flips (0.5 probability to predict either class)
- We have $\hat{\mathcal{R}} = 0.5$ when $\bar{\epsilon} = 0$, that is when all hypotheses $h_i, i = 1, ..., M$ have zero empirical error (perfect fit to noise, not good!)
- Intuitively we would like our hypothesis
 - to be able to separate noise from signal to have low $\hat{\mathcal{R}}$
 - have low empirical error on real data otherwise impossible to obtain low generalization error

Rademacher complexity

- Rademacher complexity defines complexity as the capacity of hypothesis class to fit random noise
- For binary classification with labels $\mathcal{Y} = \{-1, +1\}$ empirical Rademacher complexity can be defined as

$$\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{H}) = \frac{1}{2} E_{\sigma} \left(\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{t=1}^{m} \sigma^{i} h(\mathbf{x}_{i}) \right)$$

- σ_i ∈ {-1, +1} are Rademacher random variables, drawn independently from uniform distribution (i.e. Pr{σ = 1} = 0.5)
- Expression inside the expectation takes the highest correlation over all hypothesis in $h \in \mathcal{H}$ between the random true labels σ_i and predicted label $h(\mathbf{x}_i)$

Rademacher complexity

$$\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{H}) = \frac{1}{2} \mathcal{E}_{\sigma} \big(\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma^{i} h(\mathbf{x}_{i}) \big)$$

- Let us rewrite $\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{H})$ in terms of empirical error
- Note that with labels $\mathcal{Y}=\{+1,-1\}$,

$$\sigma_i h(\mathbf{x}_i) = \begin{cases} 1 & \text{if } \sigma_t = h(\mathbf{x}_i) \\ -1 & \text{if } \sigma_i \neq h(\mathbf{x}_i) \end{cases}$$

• Thus

$$\frac{1}{m}\sum_{i=1}^{m}\sigma_{i}h(\mathbf{x}_{i}) = \frac{1}{m}\left(\sum_{i}\mathbf{1}_{\{\mathbf{h}(\mathbf{x}_{i})=\sigma_{i}\}} - \sum_{i}\mathbf{1}_{\{\mathbf{h}(\mathbf{x}_{i})\neq\sigma_{i}\}}\right)$$
$$= \frac{1}{m}\left(m - 2\sum_{i}\mathbf{1}_{\{\mathbf{h}(\mathbf{x}_{i})\neq\sigma_{i}\}}\right) = 1 - 2\epsilon(\hat{h})$$

• Plug in

$$\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{H}) = \frac{1}{2} E_{\sigma} \big(\sup_{h \in \mathcal{H}} (1 - 2\hat{\epsilon}(h)) \big)$$
$$= \frac{1}{2} (1 - 2E_{\sigma} \inf_{h \in \mathcal{H}} \hat{\epsilon}(h)) = \frac{1}{2} - E_{\sigma} \inf_{h \in \mathcal{H}} \hat{\epsilon}(h))$$

- Now we have expressed the empirical Rademacher complexity in terms of expected empirical error of classifying randomly labeled data
- But how does the Rademacher complexity help in model selection?
 - We need to relate it to generalization error

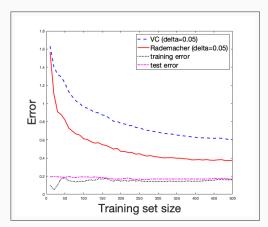
(Mohri et al. 2012): For any $\delta > 0$, with probability at least $1 - \delta$ over a sample drawn from an unknown distribution D, for any $h \in \mathcal{H}$ we have:

$$R(h) \leq \hat{R}_{\mathcal{S}}(h) + \hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{H}) + 3\sqrt{rac{\log rac{2}{\delta}}{2m}}$$

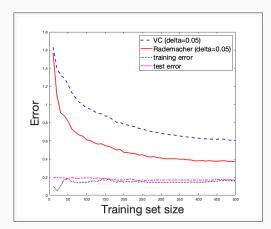
The bound is composed of the sum of :

- The empirical risk of *h* on the training data *S* (with the original labels): $\hat{R}_{S}(h)$
- The empirical Rademacher complexity: $\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{H})$
- A term that tends to zero as a function of size of the training data as $O(1/\sqrt{m})$ assuming constant δ .

- Prediction of protein subcellular localization
- 10-500 training examples, 172 test examples
- Comparing Rademacher and VC bounds using $\delta = 0.05$
- Training and test error also shown



- Rademacher bound is sharper than the VC bound
- VC bound is not yet informative with 500 examples (> 0.5) using $(\delta = 0.05)$
- The gap between the mean of the error distribution (\approx test error) and the 0.05 probability tail (VC and Rademacher bounds) is evident (and expected)



Note the differences between Rademacher complexity and VC dimension

- VC dimension is independent of any training sample or distribution generating the data: it measures the worst-case where the data is generated in a bad way for the learner
- Rademacher complexity depends on the training sample thus is dependent on the data generating distribution
- VC dimension focuses the extreme case of realizing all labelings of the data
- Rademacher complexity measures smoothly the ability to realize random labelings

- Generalization bounds based on Rademacher Complexity are applicable to any binary classifiers (SVM, neural network, decision tree)
- It motivates state of the art learning algoritms such as support vector machines
- But computing it might be hard, if we need to train a large number of classifiers
- Vapnik-Chervonenkis dimension (VCdim) is an alternative that is usually easier to derive analytically

- Statistical learning theory focuses in analyzing the generalization ability of learning algorithms
- Probably Approximately Correct framework is the most studied theoretical framework, asking for bounding the generaliation error (ϵ) with high probability (1 δ), with arbitrary level of error $\epsilon > 0$ and confidence $\delta > 0$
- Vapnik-Chervonenkis dimension lets us study learnability infinite hypothesis classes through the concept of shattering
- Rademacher complexity is a practical alternative to VC dimension, giving typically sharper bounds (but requires a lot of simulations to be run)