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Additional reading

• Mohri et al: chapter 3
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Recall: PAC learnability

• A class C is PAC-learnable, if there exist an algorithm A that given

a training sample S outputs a hypothesis hS that has generalization

error satisfying

Pr(R(hS) ≤ ε) ≥ 1− δ

• for any distribution D, for arbitrary ε, δ > 0 and sample size m = |S |
that grows at polynomially in 1/ε,1/δ
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Recall: PAC learning of a finite hypothesis class

• Sample complexity bound relying on the size of the hypothesis class

(Mohri et al, 2012): Pr(R(hs) ≤ ε) ≥ 1− δ if

m ≥ 1

ε
(log(|H|) + log(

1

δ
))

• An equivalent generalization error bound:

R(h) ≤ 1

m
(log(|H|) + log(

1

δ
))

• Holds for any finite hypothesis class assuming there is a consistent

hypothesis

• Extra term compared to the ”family car” example is the term
1
ε (log(|H|))

• The more hypotheses there are in |H|, the more training examples

are needed
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Learning with infinite hypothesis classes

• The size of the hypothesis class is a useful measure of complexity for

finite hypothesis classes (e.g boolean formulae)

• However, most classifers used in practise rely on infinite hypothesis

classes, e.g.

• H = axis-aligned rectangles in R2 (our ”family car”!)

• H = hyperplanes in Rd (e.g. Support vector machines)

• H = neural networks with continuous input variables

• Need better tools to analyze these cases
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Vapnik-Chervonenkis dimension



Intuition

• VC dimension can be understood as measuring the capacity of a

hypothesis class to adapt to different concepts

• It can be understood through the following thought experiment:

• Pick a fixed hypothesis class H, e.g. axis-aligned rectangles in R2

• Let as enumerate all possible labelings of a training set of size m:

Ym = {y1, y2, . . . , y2m}, where yj = (yj1, . . . , yjm), and yij ∈ {0, 1} is

the label of i ’th example in the j ’th labeling

• We are allowed to freely choose a distribution D generating the

inputs and to generate the input data x1, . . . , xm

• VCdim(H) = size of the largest training set that we can find a

consistent classifier for all labelings in Ym

• Intuitively:

• low VCdim =⇒ easy to learn, low sample complexity

• high VCdim =⇒ hard to learn, high sample complexity

• infinite VCdim =⇒ cannot learn in PAC framework
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Shattering

• The underlying concept in VC dimension is shattering

• Given a set of points S = {x1, . . . , xm} and a fixed class of functions

H
• H is said to shatter S if for any possible partition of S into positive

S+ and negative subset S− we can find a hypothesis for which

h(x) = 1 if and only if x ∈ S+

Figure source:

https://datascience.stackexchange.com
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How to show that VCdim(H) = d

• How to show that VCdim(H) = d for a hypothesis class

• We need to show that

• There exists a set of inputs of size d that can be shattered by

hypothesis in H (i.e. we can pick the set of inputs): VCdim(H) ≥ d

• There does not exist any set of size d + 1 that can be shattered (i.e.

need to show a general property): VCdim(H) < d + 1
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Example: intervals on a real line

• Let the hypothesis class be intervals in R

• Each hypothesis is defined by two parameters bh, eh ∈ R: the

beginning and end of the interval, h(x) = 1bh≤x≤eh

• We can shatter any set of two points by changing the end points of

the interval:

• We cannot shatter a three point set, as the middle point cannot be

excluded while the left-hand and right-hand side points are included

We conclude that VC dimension for real intervals = 2
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Lines in R2

• A hypothesis class of lines h(x) = ax + b shatters a set of three

points R2.

• We conclude that VC dimension is ≥ 3
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Lines in R2

Four points cannot be shattered by lines in R2:

• Three are only two possible configurations of four points in R2:

1. All four points reside on the convex hull

2. Three points form the convex hull and one is in interior

• In the first case (left), we cannot draw a line separating the top and

bottom points from the left-and and right-hand side points

• In the second case, we cannot separate the interior point from the

points on the convex hull with a line

• The two examples are sufficient to show that VCdim = 3

10



VC-dimension of axis-aligned rectangles

• What about our ”family car” example?

• With axis aligned rectangles we can shatter a set of four points

(picture shows 4 of the 16 configurations)

• This implies VCdim(H) ≥ 4
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VC-dimension of axis-aligned rectangles

• For five distinct points, consider the minimum bounding box of the

points

• There are two possible configurations:

1. There are one or more points in the interior of the box: then one

cannot include the points on the boundary and exclude the points in

the interior

2. At least one of the edges contains two points: in this case we can

pick either of the two points and verify that this point cannot be

excluded while all the other points are included

• Thus by the two examples we have established that VCdim(H) = 4
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Vapnik-Chervonenkis dimension formally

• Formally VCdim(H) is defined through the growth function

ΠH(m) = max
{x1,...,xm}⊂X

|{(h(x1), . . . , h(xm)) : h ∈ H}|

• The growth function gives the maximum number of unique labelings

the hypothesis class H can provide for an arbitrary set of input points

• The maximum of the growth function is 2m for a set of m examples

• Vapnik-Chervonenkis dimension is then

VCdim(H) = max
m
{m|ΠH(m) = 2m}
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Visualization

• The ratio of the growth function ΠH(m) to the maximum number of

labelings of a set of size m is shown

• Hypothesis class is 20-dimensional hyperplanes (VC dimension = 21)
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VC dimension of finite hypothesis classes

• A finite hypothesis class have VC dimension VCdim(H) ≤ log2 |H|
• To see this:

• Consider a set of m examples S = {x1, . . . , xm}
• This set can be labeled 2m different ways, by choosing the labels

yi ∈ {0, 1} independently

• Each hypothesis in h ∈ H fixes one labeling (h(x1), . . . , h(xm))

• All hypotheses in H can provide at most |H| different labelings in

total

• If |H| < 2m we cannot shatter S =⇒ we cannot shatter a set of

size m > log2 |H|
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VC dimension: Further examples

Examples of classes with a finite VC dimension:

• convex d-polygons in R2: VCdim = 2d + 1 (e.g. for general, not

restricted to axis-aligned, rectangles VCdim = 5)

• hyperplanes in Rd : VCdim = d + 1 - (e.g. single neural unit, linear

SVM)

• neural networks: VCdim = |E | log |E || where E is the set of edges in

the networks (for sign activation function)

• boolean monomials of d variables: VCdim = d (Aldo and sports

example)

• arbitrary boolean formulae of d variables: VCdim = 2d

16



Convex polygons have VC dimension =∞

• Let our hypothesis class be convex polygons in R2 without

restriction of number of vertices d

• Let us draw an arbitrary circle on R2 - the distribution D will be

concentrated on the circumference of the circle

• This is a difficult distribution for learning polygons - we choose it on

purpose
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Convex polygons have VC dimension =∞

• Let us consider a set of m points with arbitrary binary labels

• For any m, let us position m points on the circumference of the

circle

• simulating drawing the inputs from the distribution D
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Convex polygons have VC dimension =∞

• Start from an arbitrary positive point (red circles)

• Traverse the circumference clockwise skipping all negative points

and stopping and positive points
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Convex polygons have VC dimension =∞

• Connect adjacent positive points with an edge

• This forms a p-polygon inside the circle, where is the number of

positive data points
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Convex polygons have VC dimension =∞

• Define h(x) = +1 for points inside the

polygon and h(x) = 0 outside

• Each of the 2m labelings of m

examples gives us a p-polygon that

includes the p positive points in that

labeling and excludes the negative

points =⇒ we can shatter a set of

size m: VCdim(H) ≥ m

• Since m was arbitrary, we can grow it

without limit VCdim(H) =∞
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Generalization bound based on the VC-dimension

• (Mohri, 2012) Let H be a family of functions taking values in

{−1,+1} with VC-dimension d . Then for any δ > 0, with

probability at least 1− δ the following holds for all h ∈ H:

R(h) ≤ R̂(h) +

√
2 log(em/d)

m/d
+

√
log(1/δ)

2m

• e ≈ 2.71828 is the base of the natural logarithm

• The bound reveals that the critical quantity is m/d , i.e. the number

of examples divided by the VC-dimension

• Manifestation of the Occam’s razor principle: to justify an increase

in the complexity, we need reciprocally more data
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Rademacher complexity



Experiment: how well does your hypothesis class fit noise?

• Consider a set of training examples S0 = {(xi , yi )}mi=1

• Generate M new datasets S1, . . . ,SM from S0 by randomly drawing

a new label σ ∈ Y for each training example in S0

Sk = {(xi , σik)}mi=1

• Train a classifier hk minimizing the empirical risk on training set Sk ,

record its empirical risk

R̂(hk) =
1

m

m∑
i=1

1hk (xi ) 6=σik

• Compute the average empirical risk over all datasets:

ε̄ = 1
M

∑M
k=1 R̂(hk)
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Experiment: how well does your hypothesis class fit noise?

• Observe the quantity

R̂ =
1

2
− ε̄

• We have R̂ = 0 when ε̄ = 0.5, that is when the predictions

correspond to random coin flips (0.5 probability to predict either

class)

• We have R̂ = 0.5 when ε̄ = 0, that is when all hypotheses

hi , i = 1, . . . ,M have zero empirical error (perfect fit to noise, not

good!)

• Intuitively we would like our hypothesis

• to be able to separate noise from signal - to have low R̂
• have low empirical error on real data - otherwise impossible to obtain

low generalization error
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Rademacher complexity

• Rademacher complexity defines complexity as the capacity of

hypothesis class to fit random noise

• For binary classification with labels Y = {−1,+1} empirical

Rademacher complexity can be defined as

R̂S(H) =
1

2
Eσ

(
sup
h∈H

1

m

m∑
t=1

σih(xi )
)

• σi ∈ {−1,+1} are Rademacher random variables, drawn

independently from uniform distribution (i.e. Pr{σ = 1} = 0.5)

• Expression inside the expectation takes the highest correlation over

all hypothesis in h ∈ H between the random true labels σi and

predicted label h(xi )
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Rademacher complexity

R̂S(H) =
1

2
Eσ

(
sup
h∈H

1

m

m∑
i=1

σih(xi )
)

• Let us rewrite R̂S(H) in terms of empirical error

• Note that with labels Y = {+1,−1},

σih(xi ) =

{
1 if σt = h(xi )

−1 if σi 6= h(xi )

• Thus

1

m

m∑
i=1

σih(xi ) =
1

m
(
∑
i

1{h(xi )=σi} −
∑
i

1{h(xi )6=σi})

=
1

m
(m − 2

∑
i

1{h(xi ) 6=σi}) = 1− 2 ˆε(h)
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Rademacher complexity

• Plug in

R̂S(H) =
1

2
Eσ

(
sup
h∈H

(1− 2ε̂(h))
)

=
1

2
(1− 2Eσ inf

h∈H
ε̂(h)) =

1

2
− Eσ inf

h∈H
ε̂(h))

• Now we have expressed the empirical Rademacher complexity in

terms of expected empirical error of classifying randomly labeled data

• But how does the Rademacher complexity help in model selection?

• We need to relate it to generalization error
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Generalization bound with Rademacher complexity

(Mohri et al. 2012): For any δ > 0, with probability at least 1− δ over a

sample drawn from an unknown distribution D, for any h ∈ H we have:

R(h) ≤ R̂S(h) + R̂S(H) + 3

√
log 2

δ

2m

The bound is composed of the sum of :

• The empirical risk of h on the training data S (with the original

labels): R̂S(h)

• The empirical Rademacher complexity: R̂S(H)

• A term that tends to zero as a function of size of the training data

as O(1/
√
m) assuming constant δ.
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Example: Rademacher and VC bounds on a real dataset

• Prediction of protein

subcellular localization

• 10-500 training examples,

172 test examples

• Comparing Rademacher and

VC bounds using δ = 0.05

• Training and test error also

shown
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Example: Rademacher and VC bounds on a real dataset

• Rademacher bound is sharper

than the VC bound

• VC bound is not yet

informative with 500

examples (> 0.5) using

(δ = 0.05)

• The gap between the mean

of the error distribution (≈
test error) and the 0.05

probability tail (VC and

Rademacher bounds) is

evident (and expected)
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Rademacher vs. VC

Note the differences between Rademacher complexity and VC dimension

• VC dimension is independent of any training sample or distribution

generating the data: it measures the worst-case where the data is

generated in a bad way for the learner

• Rademacher complexity depends on the training sample thus is

dependent on the data generating distribution

• VC dimension focuses the extreme case of realizing all labelings of

the data

• Rademacher complexity measures smoothly the ability to realize

random labelings
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Rademacher vs. VC

• Generalization bounds based on Rademacher Complexity are

applicable to any binary classifiers (SVM, neural network, decision

tree)

• It motivates state of the art learning algoritms such as support

vector machines

• But computing it might be hard, if we need to train a large number

of classifiers

• Vapnik-Chervonenkis dimension (VCdim) is an alternative that is

usually easier to derive analytically
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Summary: Statistical learning theory

• Statistical learning theory focuses in analyzing the generalization

ability of learning algorithms

• Probably Approximately Correct framework is the most studied

theoretical framework, asking for bounding the generaliation error

(ε) with high probability (1− δ), with arbitrary level of error

ε > 0and confidence δ > 0

• Vapnik-Chervonenkis dimension lets us study learnability infinite

hypothesis classes through the concept of shattering

• Rademacher complexity is a practical alternative to VC dimension,

giving typically sharper bounds (but requires a lot of simulations to

be run)
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