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Today’s topics

A little more about stress transfer
Reinforcement by slip
Conditions for fibre fracture

The effect of fibre behaviour on composite
micromechanics
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Elastic stress transfer: interfacial shear stresses

* Interfacial shear stress (z'i) operates at
the interface, parallel to the fibre
surface

* Using a force-balance approach it can
be shown that:

do 27, i
dx r
Where: X IS the axial distance from the fibre mid-point  :

X X+ dx

r IS the fibre radius (Source: Hull & Clyne 1996)




Shear stress distribution
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Fibre-matrix debonding

* Highest interfacial shear stresses are at the fibre ends

 Debonding is clearly visible due to a change in the
refractive properties of the interface

* This is particularly visible in fragmented fibres

Debonded length

Interface breakdown

Debonded fibre ends in fragmented fibre (flax-epoxy SFC)
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Reinforcement by slip

* |f the interfacial shear stress exceeds = t— L
some critical value (the interfacial -
shear strength), then the interface |
will breakdown leading to a loss in o o le

|

adhesion / \
* Reinforcement may still take place | ic .

>

through frictional forces at the mL 0 x mL
interface and a process analogous to Model of stress transfer by slip
the Cox shear-lag mechanism will (Piggott, 1980)
operate

— (Note: Fpqx = UskE, for static friction)

* Assuming that the frictional
interfacial shear stress is constant at
the ends of the fibre, a model of the
axial fibre stress is as shown opposite

Photoelastic response in an epoxy matrix
Al at fibre ends
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Stress transfer aspect ratio

. Stress transfer aspect ratio
Whether by elastic stress transfer, or

by friction, the axial fibre stress
increases from the ends of the fibre
towards the mid-point
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—o—aspectratio =5
—e—aspectratio =25
—a—aspect ratio = 100

Over the stress transfer length, the
fibre is not being fully effective as
reinforcement

fibre axial stress (VN m3
8

8
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If the aspect ratio, s, is too small, then

T T T T T T T T T T T T T
-30 -20 -100 0 10 20 30

the fibre axial stress will not reach a positon along fibre (arbitary units)
maximum and thus is not acting
efficiently

There will therefore be an aspect ratio, where the fibre axial stress just
reaches a maximum value, for the applied composite strain. This is
known as the stress transfer aspect ratio
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Conditions for fibre failure
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Fibre axial stress

As the composite is deformed,
the maximum value of axial fibre 350
stress will increase (although the

stress transfer profile will be the ~0,5% strain
Sda me) -8-0,1% strain

0,25% strain
0,75% strain

When the fibre axial stress

reaches the tensile strength of
the fibre, it will fail

The fibre aspect ratio will / 100
decrease

Fibre axial stress (MPa)
]
D
D

As the strain on the composite
increases, the axial stress in the

] \V\
D
|

L. . . . -400 -300 -200 -100 0 100 200 300 400
remaining section will continue Position along fibre (arbitary units)

to increase, leading to further Theoretical build up of fibre axial stress

fibre failure following a Cox type shear lag mechanism

(Ef= 50 GPa; E, = 3.5 GPa; s = 50)
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Fibre fracture

* Aslonger fibres are progressively shortened, the maximum
axial tensile stress in the fibre that can be generated will
reduce, to a point below which further fracture cannot
occur. l.e. the interface fails before the fibre

* This is known as the critical fibre length

Fragmented flax fibre in an epoxy matrix SFC
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Critical fibre aspect ratio

* A critical aspect ratio (S, ) can thus be identified.
This is the point where the central axial stress in
the fibre equals the ultimate tensile strength of
the fibre (04,). It can be shown that if stress
transfer by slip (friction) is considered then:

Gfu
S, =
2T

Where Ti* is in the interfacial shear stress
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Fibre strength

* |s the strength of the
fibre going to be the
same along its entire
length?

* Unlikely! Particularly with ;
natural fibres with many
defects...
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Composite behaviour & relationship to
micromechanics

* Lower fibre aspect ratio, lower composite stiffness

* Theory predicts that the stress-strain relationship will
be linear

* Non-linear behaviour will occur when microstructural
damage commences. For example, if there is matrix
vielding, or if interfacial failure occurs, leading to a
reduction in ‘efficiency’ of stress transfer. If the fibre
fractures, then it is unable to provide as effective
reinforcement and therefore the composite stiffness
will reduce
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Interfacial failure

— R ——

Interfacial debonding
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Interfacial failure and matrix yielding

Matrix cracking
(Hughes et al 2000)

Matrix yielding

A!
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Effect of aspect ratio on composite stiffness
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Case study: the use of plant fibre as
composite reinforcement
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Composite behaviour

 What s the influence of _ Y, /
changing the degree of 340 1 UnM /
interfacial bonding? w0 | MeA
Interracial bonding: 300 orA
 Three forms of flax fibre- 228 — FEdglass
reinforced unsaturated  § 2%
. = 220 4
polyester composite % 200
investigated: 2 180
= 160 -
— No fibre treatment § 140 -
— Hydrophobic fibre oo
surface (increased 80 -
wetting) 60 -
. . 40
— Chemical bonding 20 (Hughes et al 2007)
1 1 0 — 71t r r - r r r r 1 rr r - 1 - T T 1
* Stress_Straln (and fallure) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8
characteristics altered Strain %
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Properties of polymer-matrix composites
based on natural fibres (hemp)

* Generally good stiffness - similar to glass-fibre
reinforced material, especially on a specific basis

* Adequate strength for many commonplace
applications, if not too demanding

e Poor toughness - order of magnitude lower?

* Yielding at low stress levels, making the working
range of loading quite limited
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Stiffness
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Strength
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Toughness (Chapy impact strength)
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Polarised light

A

Unprocessed Mechanically processed
hemp fibre hemp fibre
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Fibre structure

* Highly aligned structure
leads to excellent tensile
properties in fibres such as
flax, hemp, jute, ramie, etc.

e But: prone to compressive
failure through the
formation of kink-bands,
affecting either the cell wall
or the entire fibre

e This affects the behaviour of
the fibre

(Hughes et al. 2000)
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Hoeuds g = kLU

Figure 2 Bending of a flax fiber with buckling of cell walls.

(Baley 2004)




* Failure in wood and
non-wood fibre in
compression is
analogous to the
compression failure
seen in polymer
composites, or
synthetic fibre such
as Kevlar 49

(DeTeresa et al, 1984)
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Figure 7 Tensile stress—elongation curve of Kevlar 49 fibre previously compressed ~ 3% due to matrix shrinkage.

Kevlar 49 fibre without defects exhibits Hookean behaviour

Fibre containing kinks induced by compressive failure, exhibit significant
non-linear behaviour initially, before strain hardening

In subsequent cycles the fibre exhibits nearly linear behaviour
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Kink bands in flax fibre
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Figure 1 Flax fibers: Example of a bundle of flax fibers with kink bands in the same area.

Al (Baley 2004)

School of Chemical
Engineering



Stress-strain behaviour of fibres
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« Stress-strain behaviour strongly influenced by the microfibril angle
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Tensile stress-strain behaviour of elementary

flax fibre
1500 -

0 1 | 1 | |
0.0 0.5 1.0 1.5 2.0 2.5

Strain (%)

Figure 1. Typical stress—strain curve of an elementary flax fiber.

(Charlet et al, 2010)
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Tensile stress-strain behaviour of elementary
flax fibre
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Figure 1. Typical stress—strain curve of an elementary flax fiber.

School of Chemical
Engineering



FE model proposed by Nilsson & Gustafson (2007)

300
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Fig. 5. Plasticity models.

Fig. 4. Part of an FE model with dislocations, hemicellulose to the left and the embedded cellulose with dislocations to the right. Note that only the
outermost truss elements are shown.

Table 1

Description of the different analyses

Model 1 Maodel 2 Model 3

Elastic cellulose E- =130 GPa Elastic cellulose E- = 130 GPa Elastic cellulose E- = 130 GPa

Elastic hemicellulose Eye= 5.6 GPa Elasto-plastic hemicellulose model A in Fig § Elasto-plastic hemicellulose model B in Fig §
Small deformation theory Large deformation theory Large deformation theory

(Nilsson & Gustafson 2007)



Modelled tensile behaviour
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Fig. 7. Tensile behaviour of the elementary fibre.

(Nilsson & Gustafson, 2007)
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Effect of the extent of damage

100

Increasing levels of damage in flax e ]
fibre ultimates results in a lowering ~ _ o F | L SR
of the stiffness of the fibre S 70 £\ ek
This implies that the fibre undergoes é &

greater strain at the defect 2 SRR

This has been verified 5 |

experimentally by Mott et al (1996),

who showed that fibre defects acted s
_ ol 0.2 0.3 0.4 0.5 0.6
at strain concentrators Damage

The same conclusion was reached FIGURE 4. Static modulus and damage for flax ultimates.

by Eichhorn et al (2000) (Davies & Bruce, 1998)
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Effect of fibre damage (dislocations) in
hemp fibre-epoxy composites

Shear stress distribution in an
epoxy matrix adjacent to a
defect in a strained specimen
at small deformation

3}. iiﬂl].E-'-I = L %

(Hughes et al. 2000)
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Matrix shear stress post fracture

Polarised light micrograph of a failed single filament composites showing
fibre-matrix de-bonding in regions of high shear-stress concentration

adjacent to fibre defects (and fracture)

eeeee
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Model for a fibre containing dislocations

(Hughes et al. 2007)

* Continuous fibre acts as a series of shorter fibres or segments

* Dislocations act as the loci of microstructural failure, resulting in
— fibre fracture
— fibre-matrix de-bonding
— matrix cracking
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Matrix shear stress distribution

Fibre defects

principal stress difference (VN rﬁ)

locations of MC defects
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e R P 4l L
S WY i
0 4 8§ 12 16

(Eichhorn et al 2001)

position along fibre (fibre diameters)



How are composite properties affected?

* Unidirectional composites manufactured from flax fibre in an
epoxy matrix

* Fibres modified to improve fibre-matrix adhesion

* Various fibre volume fractions

* Tensile properties investigated
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Deformation behaviour
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Al (Hughes et al. 2007)
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Irreversible (plastic) deformation

Tensile stress (MPa)
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(Hughes et al. 2007)
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Fracture behaviour

o mbﬁ il &
B x500 magnification

IR e B €
A x170 magnification

Increased adhesion reduces
interfacial de-bonding and
results in a change in the
fracture behaviour: ductile to
brittle

(Hughes et al. 2007)

A x20 magnification ) B x25 magnification
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Effect of changing interfacial properties

Tensile stress (MPa)
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Table VV: Analysis of the influence of fibre-matrix adhesion upon yielding behaviour

Reinforce- Modulus Yield point
ment type
Young’s Tangent Differ- Yield Yield
Modulus modulus ence strain Stress
(GN m?) (GNm?) (%) (%) (MN m?)
unM 28.96 (1.72)| 13.82(0.98) 52 0.12 (0.01) 35.89 (3.55)
PrA 27.41 (2.26)| 18.56 (3.23) 32 0.18 (0.02) 51.32 (6.61)
MeA 26.69 (2.52)| 18.10(3.00) 32 0.18 (0.06) 50.47 (13.73)

(Hughes et al. 2007)




Effective fibre aspect ratio

160 -
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(Hughes et al. 2007)
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Other considerations about
reinforcement
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Regenerated cellulose fibre-based composites

e Continuous fibres

* Regular cross-section

» Significantly less variability than natural fibres
* Defect free?

* Potential for modification

* Various manufacturing options: conventional matrices (epoxy,
unsaturated polyesters etc.) or single polymer composites
(“all-cellulose composites” - ACC)
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Tensile behaviour of hemp fibre
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Stress-strain behaviour of regenerated
cellulose fibre

1200 -
/ (Gindl et al 2007)
1000 f

800 -

600 H

Stress (MPa)

400 4

2004 |-

Strain (%)

e High strain to failure can provide good ductility
* Pronounced yield point

School of Chemical
Engineering



Compliance vs orientation

y= -0.7468x + 0.07

0.045 4

Birefringence (An)
=
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0.035 ; — . . . . . . .
0.000 0005 0010 0015 0020 0.025 0.030 0.035 0.040 0.045

Fibre compliance (Gpa™)

Greater orientation leads to stiffer fibre — good for composite reinforcement
(Gindl et al 2007)
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loncell-epoxy composites
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Traditional matrix vs ACC

 ACCs can be prepared by ‘selective BO |
dissolution’ of fibre or by mixing of 70 1
reinforcement in dissolved cellulose,

g
=
. - = = Flax-Epouy
followed by regeneration § o vocel-Epauy
. ﬁ 40 1 — A Lk
* Various cellulose solvents have been g | o e
investigated o
* Unidirectional fibre reinforced 10
composites prepared from Lyocell or 0+ 1. ;'. i - - .
flax fibre with either epoxy or Strain (%)

‘cellulose’ matrix

* Clearly very different microstructures
created when selective dissolution
employed

Epoxy

* Failure of epoxy-matrix composites
dominate by matrix properties

(Gindl-Altmutter et al (2012). Compos. Sci. Technol. 72(11): 1304-1309)

Allcellulose




ACCs via solvent infusion processing (SIP)

(a) 1) Solvent infusion
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Fig. 1. (a) Schematic of solvent infusion processing (SIP) using agueous NaOH furea

solution as solvent. (b) Schematic of the three stages of optimisation of the
processing parameters for SIP using NaOH[urea.

« Woven Cordenka® fibre textile
 Solvent: NaOH/urea

« Dissolution time/temperature
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(Dormanns et al (2016) Composites Part A-Applied Science and Manufacturing 82: 130-140 )
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