Differential and Integral Calculus 1

Orlich/Ardiyansyah
Problem Sheet 3, 2020

Note ${ }^{1}$
The due date is published on the course pages. Homework can be submitted only digitally. Instructions on labeling the "papers" can be found on the course pages.

1 Introductory Problems

Intro 1 Find the approximations M_{8} and T_{16} for $\int_{0}^{1} e^{-x^{2}} d x$. How do you justify the number of decimals you are reporting?
Intro 2 [Trapezoid Rule] Compute the actual error in the approximation $\int_{0}^{1} x^{2} d x \approx T_{1}$ and use it to show that the constant 12 in the error estimate cannot be improved.

Intro 3 Find the area of the region bounded by

$$
y=\frac{x}{x^{2}+16}, y=0, x=0, x=2 .
$$

Intro 4 Using suitable trigonometric identities, calculate the following integrals:

$$
\int \cos a x \cos b x d x, \quad \int \sin a x \sin b x d x, \quad \int \sin a x \cos b x d x .
$$

[^0]
2 Homework Problems

ExERCISE 1 Find the approximations M_{8} and T_{16} for

$$
\int_{0}^{\pi / 2} \frac{\sin x}{x} d x
$$

assuming that the integrand is $=1$ at $x=0$. How do you justify the number of decimals you are reporting?

Exercise 2 [Midpoint Rule] Compute the actual error in the approximation $\int_{0}^{1} x^{2} d x \approx M_{1}$ and use it to show that the constant 24 in the error estimate cannot be improved.

ExERCISE 3 Find the area of the region bounded by

$$
y=\frac{x}{x^{4}+16}, y=0, x=0, x=2
$$

EXERCISE 4 If n and m are integers, show that
(i)

$$
\int_{-\pi}^{\pi} \cos m x \cos n x d x=0, \text { if } m \neq n,
$$

(ii)

$$
\int_{-\pi}^{\pi} \sin m x \sin n x d x=0, \text { if } m \neq n
$$

(iii)

$$
\int_{-\pi}^{\pi} \sin m x \cos n x d x=0
$$

[^0]: ${ }^{1}$ Published on 2020-09-27.

