CS-E4710 Machine Learning: Supervised
Methods

Lecture 4: Linear classification

Juho Rousu
September 29, 2020

Department of Computer Science
Aalto University

e Part |: Theory
e Introduction
e Generalization error analysis & PAC learning
e Rademacher Complexity & VC dimension
e Part |I: Algorithms and models
e Linear classification
e Support vector machines
Kernel methods

e Boosting
e Neural networks (MLPs)
e Part |ll: Additional learning models
e Feature learning, selection and sparsity
e Multi-class classification
e Preference learning, ranking
e Multi-output learning

Linear classification

Linear classification

Input space X C R, each x € X is a d-dimensional real-valued

vector, output space: Y = {—1,+1}

Target function or concept f : X —) assigns a (true) label to each
example
e Training sample S = {(x1,y1), .-, (Xm, ¥m)}, with y; = f(x;) drawn

from an unknown distribution D

Hypothesis class H = {x — sgn (Zle wjX; + b) lweRY beR}

consists of functions h(x) = sgn (27:1 w;x; + b) that map each

example in one of the two classes

+1, a>0 . .
e sgn(a) = {) - 0 is the sign function
= a<

Linear classifiers

Linear classifiers
d
h(x) = sgn Z wjx; + b
j=1

have several attractive properties

e They are fast to evaluate and takes small space to store (O(d) time
and space)

e Easy to understand: |w;| shows the importance of variable x; and its
sign tells if the effect is positive or negative

e Linear models have relatively low complexity (e.g. VCdim = d + 1)
so they can be reliably estimated from limited data

Good practise is to try a linear model before something more complicated

Generalizing a linear model

We can generalize the linear model by considering pairwise interactions of
variables

e Let wy be the importance of the product x;x;
e The model

d

d d
g(x) = ZZWUX,'XJ'-FZWJ-XJA- Wo
i=1 j=1

j=1

is now a quadratic function

e However, we have now O(d?) parameters to estimate, affecting time
and space complexity, and generally requires more data in order to
achieve low generalization error

Basis functions

Alternatively we can generalize a linear model through using non-linear
basis functions in the original

e A basis function ¢(x) : X — R computes a non-linear transformation
of the original data

e Through the use of basis functions we can write model as

d
g(x) = Z Wk k(X)

e The model is a linear model in the new space defined by the basis
functions

e But it can represent a non-linear model in the original space, e.g.
choose ¢x(x) = xix; where k = d(i — 1) + j, to obtain a quadratic
model

Basis functions

There is a wide variety of potentially useful basis functions, for example:

Polynomials of degree k: ¢(x) = x;, x, - - - X;

, Where 1 <j; < d

e Radial basis functions: ¢(x) = exp(—(x —m)/c)

Rectilinear functions: ¢(x) = max(0,a’x + b)

In signal processing: Wavelet and Fourier basis functions

Basis functions are important building block of neural networks and
kernel-based models

The geometry of the linear classifier

e The points
{x € X|g(x) =wx — b= 0} define a

hyperplane in RY, where d is the -
X)=w x o, Hw =0
number of variables in x g(()) . 250
S o o
e The hyperplane g(x) =w'x— b =10 c <
X O
splits the input space into two ” « ©
. . X o
half-spaces. The linear classifier X o
predicts +1 for points in the halfspace x X v
{x € X|g(x) =w'x—b>0} and —1 ' o
for points in In the figure wo = —b

{x € X|g(x) =w'x— b <0}

The geometry of the linear classifier

e w is the normal vector of the
hyperplane w'x — b =0

e The distance of the hyperplane from

the origin is |b|/ ||w/|
8lx)=0

e If b < 0 the hyperplane lies in the 8<0 220
direction of w from origin, otherwise Wl
it lies in the direction of —w

x

e The distance of a point x from the
hyperplane is [g(x)|/ [|w|| v

o If g(x) > 0, x lies in the halfspace
that is in the direction of w from the In the figure wyp = —b

g wl|

X

hyperplane, otherwise it lies in the
direction of —w from the hyperplane

Learning linear classifiers

C e of representation

e Consider learning the parameters of the linear discriminant
g(x) =w'x+ wy

e For presentation is is convenient to subsume term wy into the weight

v

and augment all inputs with a constant 1:

vector

- X
X
1

e The models have the same value for the discriminant:

T
1% 1

Geometric interpretation

e Geometrically, the hyperplane defined
by the discriminant goes now through

Or|g|n 909 =0 g(x)>0

e The positive points have an acute ‘ w
angle with w: w'x >0 /
e The negative points have an obtuse

a9 <0
angle with w: w'x <=0

10

Checking for prediction errors

e When the labels are) = {—1, +1} for a training example (x,y) we

have for g(x) = w'x,

sgn (g(x)) =

y if x is correctly classified
—y if x is incorrectly classified

e Alternative we can just multiply with the correct label to check for
misclassification:

>0 if x is correctly classified
vg(x) =

< 0 if x is incorrectly classified

11

e The geometric margin of an example
x is given by v(x) = yg(x)/ [lw||

e |t takes into account both the

distance |w x|/ ||w|| from the oo

hyperplane, and whether x is on the 8<0 80
correct side of the hyperplane Mol

e The unnormalized version of the

x

margin is sometimes called the

g wl|

functional margin v(x) = yg(x) y

e Often the term margin is used for

both variants, assuming the context
makes clear which one is meant

12

The perceptron algorithm

e The perceptron algorithm (Rosenblatt, 1958) a learns a hyperplane

separating two classes

g(x) =w'x

e |t processes incrementally a set of training examples
e At each step, it finds a training example x; that is incorrectly
classified by the current model
e |t updates the model by adding the example to the current weight
t+1) — W(t) + yix;
e This process is continued until incorrectly predicted training

vector together with the label: w!

examples are not found

13

The perceptron algorithm

Input: Training set S = {(x;,y;)}",;,x € RY y € {-1,+1}
Initialize w*) < (0,...,0),t < 1, stop <+ FALSE
repeat

if exists i, s.t. y;w(®) 7-x,- < 0 then
w(ttl) « wi®) + yiXi
else
stop <+ TRUE
end if
t—t+1
until stop

14

Understanding the update rule

e Let us examine the update rule
wtt) w4y

e We can see that the margin of the example (x;, y;) increases after
the update

.
yig I (xi) = yiw(T x; = yi(w + yix;) Tx;
T
=y x; + yPx] x; = yig (%) + [1xi])®
> yig(x;)

e Note that this does not guarantee that y;g(t+1)(x;) > 0 after the
update, further updates may be required to achieve that

15

Perceptron animation

e Assume w(?) has been found by running the algorithm for t steps

e We notice two misclassified examples

16

Perceptron animation

e Select the misclassified example (¢(x;), —1)
e Note: ¢(x;) is here some transformation of x; e.g. with some basis
functions but it could be identity ¢(x) = x

+ W(T)T q) >0
* 9(X;)

e 0

<0

16

Perceptron animation

e Update the weight vector: w(tt1) = w(®) 4+ y.¢(x;)

* 9(X;)

16

Perceptron animation

e The update tilts the hyperplane to make the example " more
correct”, i.e. more negative

e We repeat the process by finding the next misclassified example
¢(xi11) and update: w(t2) = wltHD 4y, 5 h(xi11)

+

W(Hl)— o(x i+1
+

’

('c+1)///
w

Toexeg

16

Perceptron animation

e Next iteration

16

Perceptron animation

e Next iteration

16

Perceptron animation

e Finally we have found a hyperplane that correctly classify the
training points
e We can stop the iteration and output the final weight vector

16

Convergence of the perceptron algorithm

e The perceptron algorithm can be shown to eventually converge to a
consistent hyperplane if the two classes are linearly separable, that
is, if there exists a hyperplane that separates the two classes

e Theorem (Novikoff):
e Let S = {(x;,yi)}/~; be a linearly separable training set.
e Let R = maxycs ||xil|-
e Let there exist a vector w,. that satisfies ||w.| =1 and
y,-wa;+prt >~yfori=1...,m.
e Then the perceptron algorithm will stop after at most t < (%)2
iterations and output a weight vector w(® for which y;w(t)x,' > 0 for

alli=1...,m

17

ence of the perceptron algorithm

e The number of iterations in the bound
t < (25)? depend on

e : The largest achievable geometric
margin so that all training examples
have at least that margin

e R: The smallest radius of the
d-dimensional ball that encloses the
training data

e Intuitively: how large the margin in

is relative to the distances of the
training points

18

The non-separable case

e Perceptron algorithm does not stop on a non-separable training set,
since there will always be a misclassified example that causes an
update

e In general, finding a hyperplane that minimizes the number of
classification errors is computationally hard (NP-hard to minimize

empirical error)

19

The non-separable case

The main source of difficulty is the "step function” shape of the zero-one
loss function

1 ifyw'x<0
L(y7 wa)) = Y . 15
0 otherwise

Loss

0.5

-0.5

margin: y w'x

e |t is non-differentiable, so cannot optimize using gradient approaches

e It is non-convex, so optimizer susceptible to fall in local minima

20

Surrogate loss functions for classification

There are multiple surrogate losses that are convex and differentiable
upper bounds to zero-one loss

e Squared loss - used for regression, not

optimal for classification

Squared loss]
AN AN —Hinge loss.
Logistic loss

e Hinge loss - used in Support vector
machines (Lecture 5)

Loss

e Exponential loss - used in Boosting

e Logistic loss - used in Logistic

regression margin: y w'x

21

Logistic regression

Logistic regression

Logistic regression is a classification technique (despite the name)

e it gets its name from the logistic
function

B 1 _ exp(z) :
~ l+exp(—z) 1-+exp(2)

(blogistic (Z)

that maps a real valued input z onto
the interval 0 < @jogistic(z) < 1

-6 -4 -2 o 2 4 6

e The function is an example of

sigmoid ("S" shaped) functions

22

Logistic function: a probabilistic interpretation

e The logistic function ¢jogistic(z) is the inverse of logit function

e The logit function is the logarithm of odds ratio of probability p of
and event happening vs. the probability of the event not happening,

1-p;

z = logit(p) = log 1 R log p — log(1 — p)

e Thus the logistic function

1

ogistic = .t_l =
¢Ig t (Z) og! (Z) 1+exp(—z)

answer the question "what is the probability p that gives the log
odds ratio of z"

23

Logistic regression

e Logistic regression model assumes a underlying conditional
probability:

exp(+LywTx)

Pr(y|x) =
(i) exp(+3ywTx) + exp(—1ywTx)

where the denominator normalizes the right-hand side to be between
zero and one.
e Dividing the numerator and denominator by exp(—&—%wax) reveals
the logistic function
1
Pr(y|x) = stic(yw'x) = ————
()/|) (bIOgIStIC(y) 1 + exp(—wax)
e The margin z = yw ' x is thus interpreted as the log odds ratio of
label y vs. label —y given input x:

Pr(y[x)

-
yw'x = log ————~
Pr(—ylx)

24

Logistic loss

e Consider the maximization of the likelihood of the observed
input-output in the training data:

1

= argmax,, H P y, |X = argmax,, H m

i=1

e Since the logarithm is monotonically increasing function, we can
take the logarithm to obtain an equivalent objective:

Zlog Pr(yilx;) = Zlog (1+ exp(—yiw'x;))

i=1

e The right-hand side is the logistic loss:

Liogistic(y,w " x) = log(1 + exp(—yw x))

e Minimizing the logistic loss correspond maximizing the likelihood of
the training data

25

Geometric interpretation of Logistic loss

Llogistic()/7 WTX) - |Og(1 + exp(nyTx))

e Logistic loss is convex and
differentiable

e |t is a monotonically decreasing
function of the margin ywTx : o

—0/1-loss

e The loss changes fast when the
margin is highly negative —-

Loss

penalization of examples far in the

incorrect halfspace

e It changes slowly for highly positive

margins = does not give extra : " marginy w'x

bonus for being very far in the correct
halfspace

26

Logistic regression optimization problem

e To train a logistic regression model, we need to find the w that

minimizes the average logistic loss J(w) = 1 > L,og,-st,-c(y,-,wa,-)

T m

over the training set:

1 m
min J(w) = - Z log(1 + exp(—yiw x;)
i=1

w.r.t parameters w € RY

e The function to be minimized is continuous and differentiable

e However, it is a non-linear function so it is not easy to find the
optimum directly (e.g. unlike in linear regression)

e We will use stochastic gradient descent to incrementally step
towards the direction where the objective decreases fastest, the
negative gradient

27

e The gradient is the vector of partial derivatives of the objective
function J(w) with respect to all parameters w;

m m) T
:%Zw(%Z[Joo s 5 di(w)
=i

i=1

e Compute the gradient by using the regular rules for differentiation.
For the logistic loss we have

0 0 exp(— y,wa,-)

—Ji(w) = a—wj log(1 + exp(—yiw " x;)) = T+ exp(—yw T

) ' (7yixl‘j)
1

T
- ViXi = — e (—viw' x:)vixi:
1+ exp(y,-wTX,-)y' ij ¢Iog/st1c(Yi :)y/ ij

28

Stochastic gradient descent

e We collect the partial derivatives with respect to a single training

example into a vector:

__((b/ogistic(_yiw-rxi)yi) '

VJi(w) = | —(Progistic(—yiw T x;)y;) -

L™ ((blogistic(_)/iw Tx;)y,-) ’

Xid |

= —rogistic(—yiW X;)yi - X;

e The vector —VJ;(w) gives the update direction that fastest
decreases the loss on training example (x;, y;)

29

Stochastic gradient descent

e Evaluating the full gradient
V) = 23 V) =~ 2 3 by
m pat ! m — ogistic I 1) I

is costly since we need to process all training examples

e Stochastic gradient descent instead uses a series of smaller updates
that depend on single randomly drawn training example (x;, y;) at a
time

e The update direction is taken as —V J;(w)

e Its expectation is the full negative gradient:
—Eiz1..m [VJi(w)] = =VJ(w)
e Thus on average, the updates match that of using the full gradient

30

Stochastic gradient descent algorithm

Initialize w = 0
repeat
Draw a training example (x;, y;) uniformly at random
Compute the update direction corresponding to the training example:
Aw = —VJ,‘(W)
Determine a stepsize 7
Update w = w — nVJ;(w)
until stopping criterion statisfied
Output w

31

Stepsize selection

Consider the SGD update: w = w — nvJ;(w)

e The stepsize parameter 7, also called the learning rate is a critical
one for convergence to the optimum value

e One uses small constant stepsize, the initial convergence may be
unnecessarily slow

e Too large stepsize may cause the method to continually overshoot
the optimum.

fiw) fiw)
w* w w* w
Too small: converge Too big: overshoot and
very slowly even diverge

Source: https://dunglai.github.io/2017/12/21 /gradient-descent/ 32

Diminishing stepsize

e Initially larger but diminishing stepsize is one option:

for some o > 0, where t is the iteration counter
e Caution: In practice, finding a good value for parameter « requires
experimenting with several values

fiw) Siw)

w* w w’ w
Too small: converge Too big: overshoot and
very slowly even diverge

Source: https://dunglai.github.io/2017/12/21 /gradient-descent/

33

e Linear classification model are and important class of machine
learning models, they are used as standalone models and appear as
building blocks of more complicated, non-liner models

e Perceptron is a simple algorithm to train linear classifiers on linearly
separable data

e Logistic regression is a classification method that can be interpreted
as maximizing odds ratios of conditional class probabilities

e Stochastic gradient descent is an efficient optimization method for
large data that is nowadays very widely used

34

	Linear classification
	Learning linear classifiers
	Logistic regression

