
CS-E4710 Machine Learning: Supervised

Methods

Lecture 4: Linear classification

Juho Rousu

September 29, 2020

Department of Computer Science

Aalto University

Course topics

• Part I: Theory

• Introduction

• Generalization error analysis & PAC learning

• Rademacher Complexity & VC dimension

• Part II: Algorithms and models

• Linear classification

• Support vector machines

• Kernel methods

• Boosting

• Neural networks (MLPs)

• Part III: Additional learning models

• Feature learning, selection and sparsity

• Multi-class classification

• Preference learning, ranking

• Multi-output learning

1

Linear classification

Linear classification

• Input space X ⊂ Rd , each x ∈ X is a d-dimensional real-valued

vector, output space: Y = {−1,+1}
• Target function or concept f : X 7→ Y assigns a (true) label to each

example

• Training sample S = {(x1, y1), . . . , (xm, ym)}, with yi = f (xi) drawn

from an unknown distribution D

• Hypothesis class H = {x 7→ sgn
(∑d

j=1 wjxj + b
)
|w ∈ Rd , b ∈ R}

consists of functions h(x) = sgn
(∑d

j=1 wjxj + b
)

that map each

example in one of the two classes

• sgn (a) =

{
+1, a ≥ 0

−1 a < 0
is the sign function

2

Linear classifiers

Linear classifiers

h(x) = sgn

 d∑
j=1

wjxj + b


have several attractive properties

• They are fast to evaluate and takes small space to store (O(d) time

and space)

• Easy to understand: |wj | shows the importance of variable xj and its

sign tells if the effect is positive or negative

• Linear models have relatively low complexity (e.g. VCdim = d + 1)

so they can be reliably estimated from limited data

Good practise is to try a linear model before something more complicated

3

Generalizing a linear model

We can generalize the linear model by considering pairwise interactions of

variables

• Let wij be the importance of the product xixj

• The model

g(x) =
d∑

i=1

d∑
j=1

wijxixj +
d∑

j=1

wjxj + w0

is now a quadratic function

• However, we have now O(d2) parameters to estimate, affecting time

and space complexity, and generally requires more data in order to

achieve low generalization error

4

Basis functions

Alternatively we can generalize a linear model through using non-linear

basis functions in the original

• A basis function φ(x) : X 7→ R computes a non-linear transformation

of the original data

• Through the use of basis functions we can write model as

g(x) =
d∑

k=1

wkφk(x)

• The model is a linear model in the new space defined by the basis

functions

• But it can represent a non-linear model in the original space, e.g.

choose φk(x) = xixj where k = d(i − 1) + j , to obtain a quadratic

model

5

Basis functions

There is a wide variety of potentially useful basis functions, for example:

• Polynomials of degree k : φ(x) = xi1xi2 · · · xik where 1 ≤ ij ≤ d

• Radial basis functions: φ(x) = exp(−(x−m)/c)

• Rectilinear functions: φ(x) = max(0, aTx + b)

• In signal processing: Wavelet and Fourier basis functions

Basis functions are important building block of neural networks and

kernel-based models

6

The geometry of the linear classifier

• The points

{x ∈ X |g(x) = wTx− b = 0} define a

hyperplane in Rd , where d is the

number of variables in x

• The hyperplane g(x) = wTx− b = 0

splits the input space into two

half-spaces. The linear classifier

predicts +1 for points in the halfspace

{x ∈ X |g(x) = wTx− b ≥ 0} and −1

for points in

{x ∈ X |g(x) = wTx− b < 0}
In the figure w0 = −b

7

The geometry of the linear classifier

• w is the normal vector of the

hyperplane wTx− b = 0

• The distance of the hyperplane from

the origin is |b|/ ‖w‖
• If b < 0 the hyperplane lies in the

direction of w from origin, otherwise

it lies in the direction of −w

• The distance of a point x from the

hyperplane is |g(x)|/ ‖w‖
• If g(x) > 0, x lies in the halfspace

that is in the direction of w from the

hyperplane, otherwise it lies in the

direction of −w from the hyperplane

In the figure w0 = −b

8

Learning linear classifiers

Change of representation

• Consider learning the parameters of the linear discriminant

g(x) = wTx + w0

• For presentation is is convenient to subsume term w0 into the weight

vector

w⇐

[
w

w0

]
and augment all inputs with a constant 1:

x⇐

[
x

1

]

• The models have the same value for the discriminant:[
w

w0

]T [
x

1

]
= wTx + w0

9

Geometric interpretation

• Geometrically, the hyperplane defined

by the discriminant goes now through

origin

• The positive points have an acute

angle with w: wTx > 0

• The negative points have an obtuse

angle with w: wTx <= 0

10

Checking for prediction errors

• When the labels are Y = {−1,+1} for a training example (x, y) we

have for g(x) = wTx,

sgn (g(x)) =

{
y if x is correctly classified

−y if x is incorrectly classified

• Alternative we can just multiply with the correct label to check for

misclassification:

yg(x) =

{
≥ 0 if x is correctly classified

< 0 if x is incorrectly classified

11

Margin

• The geometric margin of an example

x is given by γ(x) = yg(x)/ ‖w‖
• It takes into account both the

distance |wTx|/ ‖w‖ from the

hyperplane, and whether x is on the

correct side of the hyperplane

• The unnormalized version of the

margin is sometimes called the

functional margin γ(x) = yg(x)

• Often the term margin is used for

both variants, assuming the context

makes clear which one is meant

12

The perceptron algorithm

• The perceptron algorithm (Rosenblatt, 1958) a learns a hyperplane

separating two classes

g(x) = wTx

• It processes incrementally a set of training examples

• At each step, it finds a training example xi that is incorrectly

classified by the current model

• It updates the model by adding the example to the current weight

vector together with the label: w(t+1) ← w(t) + yixi

• This process is continued until incorrectly predicted training

examples are not found

13

The perceptron algorithm

Input: Training set S = {(xi , yi)}mi=1, x ∈ Rd , y ∈ {−1,+1}
Initialize w (1) ← (0, . . . , 0), t ← 1, stop ← FALSE

repeat

if exists i , s.t. yiw(t)Txi ≤ 0 then

w(t+1) ← w(t) + yixi
else

stop ← TRUE

end if

t ← t + 1

until stop

14

Understanding the update rule

• Let us examine the update rule

w(t+1) ← w(t) + yixi

• We can see that the margin of the example (xi , yi) increases after

the update

yig
(t+1)(xi) = yiw

(t+1)Txi = yi (w(t) + yixi)
Txi

= yiw
(t)Txi + y2

i xTi xi = yig
(t)(xi) + ‖xi‖2

≥ yig
(t)(xi)

• Note that this does not guarantee that yig
(t+1)(xi) > 0 after the

update, further updates may be required to achieve that

15

Perceptron animation

• Assume w(t) has been found by running the algorithm for t steps

• We notice two misclassified examples

16

Perceptron animation

• Select the misclassified example (φ(xi),−1)

• Note: φ(xi) is here some transformation of xi e.g. with some basis

functions but it could be identity φ(x) = x

w
(τ)

w
(τ) φT > 0

w
(τ)T

φ < 0

_

_

_

+

+
+

_

+

x iφ()

16

Perceptron animation

• Update the weight vector: w(t+1) = w(t) + yiφ(xi)

w
(τ)

x iφ()

_

_

_

+

+
+

+

_w
(τ) φ(i)x

_

16

Perceptron animation

• The update tilts the hyperplane to make the example ”more

correct”, i.e. more negative

• We repeat the process by finding the next misclassified example

φ(xi+1) and update: w(t+2) = w(t+1) + yi+1φ(xi+1)

w
(τ+1)

x i+1φ()

_

_

_

+

+
+

+

_w
(τ+1) φ(x) i+1

_

16

Perceptron animation

• Next iteration

w
(τ+2)

_

_

_

+

+
+

+

_

16

Perceptron animation

• Next iteration

_

_

_

+

+
+

+

_

16

Perceptron animation

• Finally we have found a hyperplane that correctly classify the

training points

• We can stop the iteration and output the final weight vector

_

_

_

+

+
+

+

_

16

Convergence of the perceptron algorithm

• The perceptron algorithm can be shown to eventually converge to a

consistent hyperplane if the two classes are linearly separable, that

is, if there exists a hyperplane that separates the two classes

• Theorem (Novikoff):

• Let S = {(xi , yi)}mi=1 be a linearly separable training set.

• Let R = maxxi∈S ‖xi‖.
• Let there exist a vector w∗ that satisfies ‖w∗‖ = 1 and

yiw
T
∗ xi + bopt ≥ γ for i = 1 . . . ,m.

• Then the perceptron algorithm will stop after at most t ≤ (2R
γ

)2

iterations and output a weight vector w(t) for which yiw
(t)xi ≥ 0 for

all i = 1 . . . ,m

17

Convergence of the perceptron algorithm

• The number of iterations in the bound

t ≤ (2R
γ)2 depend on

• γ: The largest achievable geometric

margin so that all training examples

have at least that margin

• R: The smallest radius of the

d-dimensional ball that encloses the

training data

• Intuitively: how large the margin in

is relative to the distances of the

training points

γ

R

w
||w|| = 1

18

The non-separable case

• Perceptron algorithm does not stop on a non-separable training set,

since there will always be a misclassified example that causes an

update

• In general, finding a hyperplane that minimizes the number of

classification errors is computationally hard (NP-hard to minimize

empirical error)

19

The non-separable case

The main source of difficulty is the ”step function” shape of the zero-one

loss function

L(y ,wTx)) =

{
1 if ywTx < 0

0 otherwise

• It is non-differentiable, so cannot optimize using gradient approaches

• It is non-convex, so optimizer susceptible to fall in local minima

20

Surrogate loss functions for classification

There are multiple surrogate losses that are convex and differentiable

upper bounds to zero-one loss

• Squared loss - used for regression, not

optimal for classification

• Hinge loss - used in Support vector

machines (Lecture 5)

• Exponential loss - used in Boosting

• Logistic loss - used in Logistic

regression

21

Logistic regression

Logistic regression

Logistic regression is a classification technique (despite the name)

• it gets its name from the logistic

function

φlogistic(z) =
1

1 + exp(−z)
=

exp(z)

1 + exp(z)

that maps a real valued input z onto

the interval 0 < φlogistic(z) < 1

• The function is an example of

sigmoid (”S” shaped) functions

22

Logistic function: a probabilistic interpretation

• The logistic function φlogistic(z) is the inverse of logit function

• The logit function is the logarithm of odds ratio of probability p of

and event happening vs. the probability of the event not happening,

1− p;

z = logit(p) = log
p

1− p
= log p − log(1− p)

• Thus the logistic function

φlogistic(z) = logit−1(z) =
1

1 + exp(−z)

answer the question ”what is the probability p that gives the log

odds ratio of z”

23

Logistic regression

• Logistic regression model assumes a underlying conditional

probability:

Pr(y |x) =
exp(+ 1

2ywTx)

exp(+ 1
2ywTx) + exp(− 1

2ywTx)

where the denominator normalizes the right-hand side to be between

zero and one.

• Dividing the numerator and denominator by exp(+ 1
2ywTx) reveals

the logistic function

Pr(y |x) = φlogistic(ywTx) =
1

1 + exp(−ywTx)

• The margin z = ywTx is thus interpreted as the log odds ratio of

label y vs. label −y given input x:

ywTx = log
Pr(y |x)

Pr(−y |x)

24

Logistic loss

• Consider the maximization of the likelihood of the observed

input-output in the training data:

w∗ = argmaxw

m∏
i=1

P(yi |xi) = argmaxw

m∏
i=1

1

1 + exp(−ywTx)

• Since the logarithm is monotonically increasing function, we can

take the logarithm to obtain an equivalent objective:

m∑
i=1

logPr(yi |xI) = −
m∑
i=1

log(1 + exp(−yiwTxi))

• The right-hand side is the logistic loss:

Llogistic(y ,wTx) = log(1 + exp(−ywTx))

• Minimizing the logistic loss correspond maximizing the likelihood of

the training data

25

Geometric interpretation of Logistic loss

Llogistic(y ,wTx) = log(1 + exp(−ywTx))

• Logistic loss is convex and

differentiable

• It is a monotonically decreasing

function of the margin ywTx

• The loss changes fast when the

margin is highly negative =⇒
penalization of examples far in the

incorrect halfspace

• It changes slowly for highly positive

margins =⇒ does not give extra

bonus for being very far in the correct

halfspace

26

Logistic regression optimization problem

• To train a logistic regression model, we need to find the w that

minimizes the average logistic loss J(w) = 1
m

∑m
i=1 Llogistic(yi ,wTxi)

over the training set:

min J(w) =
1

m

m∑
i=1

log(1 + exp(−yiwTxi)

w .r .t parameters w ∈ Rd

• The function to be minimized is continuous and differentiable

• However, it is a non-linear function so it is not easy to find the

optimum directly (e.g. unlike in linear regression)

• We will use stochastic gradient descent to incrementally step

towards the direction where the objective decreases fastest, the

negative gradient

27

Gradient

• The gradient is the vector of partial derivatives of the objective

function J(w) with respect to all parameters wj

∇J(w) =
1

m

m∑
i=1

∇Ji (w) =
1

m

m∑
i=1

[
∂
∂w1

Ji (w), . . . , ∂
∂wd

Ji (w)
]T

• Compute the gradient by using the regular rules for differentiation.

For the logistic loss we have

∂

∂wj
Ji (w) =

∂

∂wj
log(1 + exp(−yiwT xi)) =

exp(−yiwT xi)

1 + exp(−yiwT xi)
· (−yixij)

= − 1

1 + exp(yiwT xi)
yixij = −φlogistic(−yiwT xi)yixij

28

Stochastic gradient descent

• We collect the partial derivatives with respect to a single training

example into a vector:

∇Ji (w) =



−(φlogistic(−yiwTxi)yi) · xi1
...

−(φlogistic(−yiwTxi)yi) · xij
...

−(φlogistic(−yiwTxi)yi) · xid


= −φlogistic(−yiwTxi)yi · xi

• The vector −∇Ji (w) gives the update direction that fastest

decreases the loss on training example (xi , yi)

29

Stochastic gradient descent

• Evaluating the full gradient

∇J(w) =
1

m

n∑
i=1

∇Ji (w) = − 1

m

m∑
i=1

φlogistic(−yiwTxi)yi · xi

is costly since we need to process all training examples

• Stochastic gradient descent instead uses a series of smaller updates

that depend on single randomly drawn training example (xi , yi) at a

time

• The update direction is taken as −∇Ji (w)

• Its expectation is the full negative gradient:

−Ei=1...,m [∇Ji (w)] = −∇J(w)

• Thus on average, the updates match that of using the full gradient

30

Stochastic gradient descent algorithm

Initialize w = 0

repeat

Draw a training example (xi , yi) uniformly at random

Compute the update direction corresponding to the training example:

∆w = −∇Ji (w)

Determine a stepsize η

Update w = w − η∇Ji (w)

until stopping criterion statisfied

Output w

31

Stepsize selection

Consider the SGD update: w = w − ηOJi (w)

• The stepsize parameter η, also called the learning rate is a critical

one for convergence to the optimum value

• One uses small constant stepsize, the initial convergence may be

unnecessarily slow

• Too large stepsize may cause the method to continually overshoot

the optimum.

Source: https://dunglai.github.io/2017/12/21/gradient-descent/ 32

Diminishing stepsize

• Initially larger but diminishing stepsize is one option:

η(t) =
1

αt

for some α > 0, where t is the iteration counter

• Caution: In practice, finding a good value for parameter α requires

experimenting with several values

Source: https://dunglai.github.io/2017/12/21/gradient-descent/

33

Summary

• Linear classification model are and important class of machine

learning models, they are used as standalone models and appear as

building blocks of more complicated, non-liner models

• Perceptron is a simple algorithm to train linear classifiers on linearly

separable data

• Logistic regression is a classification method that can be interpreted

as maximizing odds ratios of conditional class probabilities

• Stochastic gradient descent is an efficient optimization method for

large data that is nowadays very widely used

34

	Linear classification
	Learning linear classifiers
	Logistic regression

