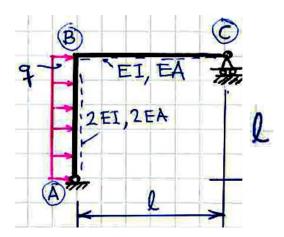
Note that remote exam will be for 4 hours.

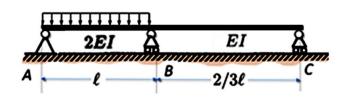
CIV-E1020 - Mechanics of Beam and Frame Structures – Examination 6.2.2020 duration: 3h

It is compulsory to solve THREE EXERCISES. There is no extra exercises: #1, #2 and #3 or #1, #2 and #4. If someone solves all the four exercises, then the fourth exercise – #3 or #4 – with fewest points obtained will not be graded.


- Formulary are enclosed with the questions

- The material is linear elastic in all the structures

 <u>Use the dummy unit-load theorem</u> (or method) and determine the horizontal displacement of the roller at support C [5 pnts].
Support A is hinged.


Determine the support reactions and <u>draw accurately</u> the needed internal force diagrams N and M. Account for both bending and stretching/compression in determining the displacement.

Grading 3 oblig	GRADE		
Points in this ex			
14.25	15	5	
12.75	13.5	4	
9.75	12	3	
8.25	9	2	
6	7.5	1	
< 6	fail	0	

2. What is the degree of statical indeterminacy?

<u>Use the general force method</u> and determine the bending moment at the mid-support B for the continuous beam. Draw accurately the all needed bending moment

0

 $\phi_2 = ?$

q

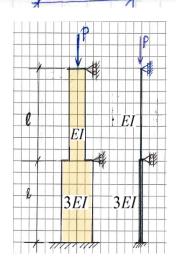
 $\phi_2 = ?$

diagrams. [5 p] Ignore the effect of shear deformation in the flexibility coefficients (account only for bending effects)

3. Use <u>Slope-Deflection Method</u> and determine the bending moment at

the rigid support 3. All the supports are rigid (jäykkä kiinnitys)

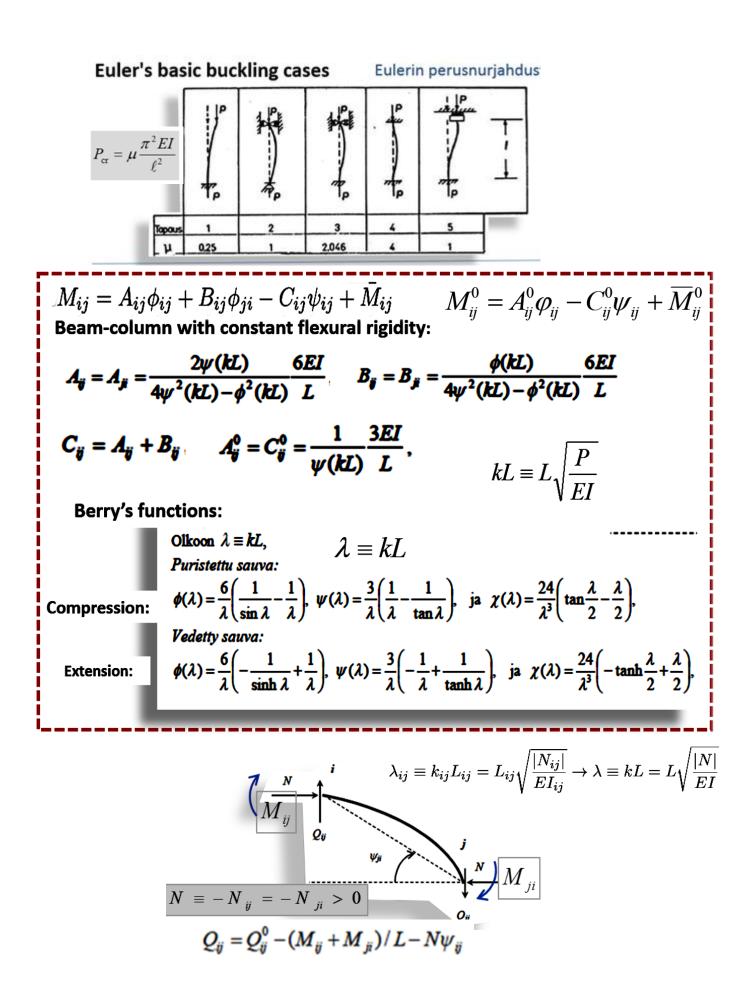
a) Rotation at node 2?

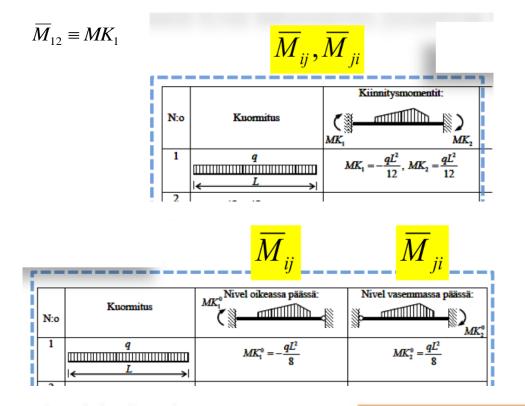

- [4 pnts]
- b) Bending moment at node 3? [1 pnt]

Hint: Is it a sway or non-sway frame? What is the degree of kinematical indeterminacy? (=number of independent translation kinematical degrees of freedom). The brown dot-lines shows the positive sides of the beams (or columns)

4. <u>Use Slope-Deflection Method</u> and derive the expression of the *criticality condition* to determine the critical buckling load for this continuous column [4p]. <u>No need to solve numerically for the buckling load</u>. The force *P* is centrically applied to the column.

Sketch the corresponding buckling mode.

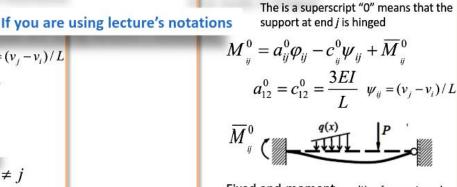

Use **Euler** basic buckling cases & give a bracket (=haarukoi, in Finnish) for the value of this critical load? [1 pnt]



EI

3EI

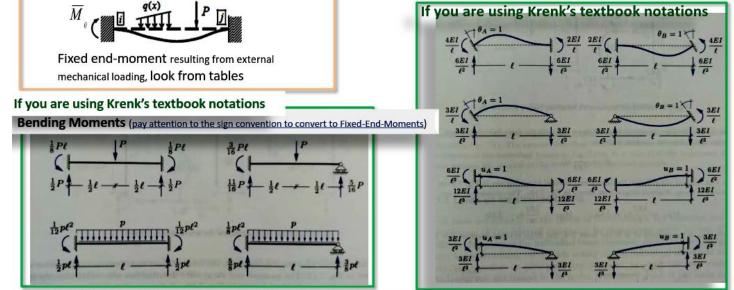
EI


The stiffness equation relating the end-moments to the end-displacements

 $\varphi_{12}^{\mu_{12}} \quad \psi_{ij} \equiv (v_i - v_i)/L$

 $M_{ij} = a_{ij}\varphi_{ij} + b_{ij}\varphi_{ji} - c_{ij}\psi_{ij} + \overline{M}_{ij}, \ i \neq j$

 $a_{ij} = \frac{4EI}{L}, \ b_{ij} = \frac{2EI}{L}, \ c_{ij} = \frac{6EI}{L}$ (EI-constant)


No hinge

One node is hinged

Fixed end-moment resulting from external mechanical loading, look from tables

If you are using Krenk's textbook notations

	5					
•	TABLEAU DES INTEGRALES Joe MkMdx					
×M, ₩,	c[]]]]]]	c R	e d	c[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	2° dag c	
a	act	1 act	<u>1</u> adł 2	$\frac{1}{2}al(c+d)$	<u>=</u> act	
a	<u>1</u> ac l	1 act	t adt	1 al(2c+d)	$\frac{1}{3}$ act	
b	$\frac{1}{2}$ bcł	t bet	1/3 bdł	₫ b१ (c+2d) 6	1 bcł	
a b	1(a+b) cl	<u>1</u> (20+b) c ł	±(a+2b)dℓ	\$[a(2c+d) + + b(c+2d)]	± (a+b) c €	
2 ^{-day}	1 act	± acl	1 adl	<u>1</u> 2al (3c+d)	<u>1</u> acl	
2 deg. a l	<u>2</u> ac <i>t</i>	<u>5</u> act 12	1/4 adl	<u>1</u> al (5c+3d) 12	7 act	
1	5	12	7	12	10	

Maxwell-Mohr integrals table