Taloustieteen matemaattiset menetelmät
31C01100
Syksy 2020
Lassi Tervonen
lassi.tervonen@aalto.fi

Problem Set 1: Solutions

1. Solution Let R_{1}, R_{2} and R_{3} stand for rows $1-3$, respectively.
(1) Substract $2 R_{1}$ from the second row and $3 R_{1}$ from the third row
(2) Multiply the third row by 4
(3) Substract $5 R_{2}$ from the third row

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & -3 & 0 \\
2 & 4 & -2 & 2 \\
3 & 6 & -4 & 3
\end{array}\right] } \xrightarrow{(1)}\left[\begin{array}{llcc}
1 & 2 & -3 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & 5 & 3
\end{array}\right] \\
& \xrightarrow{(2)}\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & 20 & 12
\end{array}\right] \\
& \xrightarrow{(3)}\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

The matrix is now in its row echelon form and has 3 nonzero rows \Longrightarrow Rank is 3 .
2. Solution Let R_{1}, R_{2} and R_{3} stand for rows $1-3$, respectively.
(1) Substract R_{1} from the second row and $2 R_{1}$ from the third row
(2) Divide the second row by 3
(3) Add $2 R_{2}$ to the first row and substract $9 R_{2}$ from the third row
(4) Divide the third row by 2
(5) Add $\frac{1}{3} R_{3}$ to the first row and $\frac{2}{3} R_{3}$ to the second row

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 3 & 1 & 2 \\
1 & 1 & 4 & -1 & 3 \\
2 & 5 & 9 & -2 & 8
\end{array}\right] \xrightarrow{(1)}\left[\begin{array}{ccccc}
1 & -2 & 3 & 1 & 2 \\
0 & 3 & 1 & -2 & 1 \\
0 & 9 & 3 & -4 & 4
\end{array}\right] \xrightarrow{(2)}\left[\begin{array}{ccccc}
1 & -2 & 3 & 1 & 2 \\
0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\
0 & 9 & 3 & -4 & 4
\end{array}\right]} \\
& \xrightarrow{(3)}\left[\begin{array}{ccccc}
1 & 0 & \frac{11}{3} & -\frac{1}{3} & \frac{8}{3} \\
0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 2 & 1
\end{array}\right] \xrightarrow{(4)}\left[\begin{array}{cccccc}
1 & 0 & \frac{11}{3} & -\frac{1}{3} & \frac{8}{3} \\
0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 1 & \frac{1}{2}
\end{array}\right] \xrightarrow{(5)}\left[\begin{array}{ccccc}
1 & 0 & \frac{11}{3} & 0 & \frac{17}{6} \\
0 & 1 & \frac{1}{3} & 0 & \frac{2}{3} \\
0 & 0 & 0 & 1 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

The matrix is now in its reduced row echelon form and has 3 nonzero rows \Longrightarrow Rank is 3 .
3. Solution Let R_{1}, R_{2} and R_{3} stand for rows 1-3, respectively. Write the system of equations in augmented coefficient matrix form and perform the following elementary row operations:
(1) Add $\left(R_{2}-3 R 1\right)$ to the second row and $\left(R_{3}-5 R_{1}\right)$ to the third row
(2) Substract $5 R_{2}$ from the third row

$$
\begin{gathered}
{\left[\begin{array}{ccccc:c}
2 & -5 & 3 & -4 & 2 & 4 \\
3 & -7 & 2 & 5 & 4 & 9 \\
5 & -10 & -5 & -4 & 7 & 22
\end{array}\right] \xrightarrow{(1)}\left[\begin{array}{ccccc|c}
2 & -5 & 3 & -4 & 2 & 4 \\
0 & 1 & -5 & 2 & 2 & 6 \\
0 & 5 & 25 & 12 & 4 & 24
\end{array}\right]} \\
\\
\xrightarrow{(2)}\left[\begin{array}{ccccc|c}
2 & -5 & 3 & -4 & 2 & 4 \\
0 & 1 & -5 & 2 & 2 & 6 \\
0 & 0 & 0 & 2 & -6 & -6
\end{array}\right]
\end{gathered}
$$

The matrix is now in its row echelon form. The corresponding system of equations is:

$$
\begin{aligned}
2 x-5 y+3 z-4 s+2 t & =4 \\
y-5 z+2 s+2 t & =6 \\
2 s-6 t & =-6
\end{aligned}
$$

Solve for the leading unknowns $(x, y$, and $s)$:

$$
\begin{aligned}
& x=26+11 z-15 t \\
& y=12+5 z-8 t \\
& s=-3+3 t
\end{aligned}
$$

which is the general solution in the free-variable form (z and t are the free variables). The parametric form of the general solution is

$$
\begin{aligned}
x & =26+11 a-15 b \\
y & =12+5 a-8 b \\
s & =-3+3 b \\
z & =a \\
t & =b
\end{aligned}
$$

where $a, b \in \mathbb{R}$.
4. Solution Let R_{1}, R_{2} and R_{3} stand for equations 1-3, respectively.

$$
\begin{aligned}
x+2 y-3 z & =a \\
2 x+6 y-11 z & =b \\
x-2 y+7 z & =c
\end{aligned}
$$

(1) Substract $2 R_{1}$ from the second equation and R_{1} from the third equation:

$$
\begin{aligned}
x+2 y-3 z & =a \\
2 y-5 z & =b-2 a \\
-4 y+10 z & =c-a
\end{aligned}
$$

(2) Add $2 R_{2}$ to the third equation:

$$
\begin{aligned}
x+2 y-3 z & =a \\
2 y-5 z & =b-2 a \\
0 & =c-5 a+2 b
\end{aligned}
$$

Now we see that if $c-5 a+2 b \neq 0$ the system will have no solution. Thus, if $c-5 a+2 b=0$, the system will have at least one solution. Because the rank of the corresponding coefficient matrix is less than the number of unknowns, the system has infinitely many solutions.

5. Solution

1.

$$
A^{T}=\left[\begin{array}{ccc}
2 & 1 & -3 \\
-1 & 0 & 4
\end{array}\right] \quad B^{T}=\left[\begin{array}{cc}
1 & 3 \\
-2 & 4 \\
-5 & 0
\end{array}\right]
$$

2.

$$
\begin{gathered}
A B=\left[\begin{array}{cc}
2 & -1 \\
1 & 0 \\
-3 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -5 \\
3 & 4 & 0
\end{array}\right] \\
=\left[\begin{array}{ccc}
2 \times 1+(-1) \times 3 & 2 \times(-2)+(-1) \times 4 & 2 \times(-5)+(-1) \times 0 \\
1 \times 1+0 \times 3 & 1 \times(-2)+0 \times 4 & 1 \times(-5)+0 \times 0 \\
(-3) \times 1+4 \times 3 & (-3) \times(-2)+4 \times 4 & (-3) \times(-5)+4 \times 0
\end{array}\right] \\
=\left[\begin{array}{ccc}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{array}\right] \\
B A=\left[\begin{array}{ccc}
1 & -2 & -5 \\
3 & 4 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
1 & 0 \\
-3 & 4
\end{array}\right] \\
=\left[\begin{array}{c}
1 \times 2+(-2) \times 1+(-5) \times(-3) \\
3 \times 2+4 \times 1+0 \times(-3) \\
3 \times(-1)+(-2) \times 0+(-5) \times 4 \\
3 \times(-1)+4 \times 0+0 \times 4
\end{array}\right] \\
=\left[\begin{array}{cc}
15 & -21 \\
10 & -3
\end{array}\right]
\end{gathered}
$$

