Conditional independence Kaie Kubjas, 23.9.2020

- Conditional independence: definition and axioms
- Conditional independence ideals
- rooms
- primary decompositions of conditional independence ideals

Agenda

Mostly traditional lecture, one or two short worksheet tasks in Breakout

• At the beginning of the next lecture, we will continue with the same topic:

• Random vector $X = (X_1, \ldots, X_m)$

X takes values in a Cartesian product space $\mathcal{X} = \mathcal{X}_i$

- We assume that either:
 - X has density $f(x) = f(x_1, ..., x_n)$ that is continuous on \mathcal{X} , or
 - \mathscr{X} is a finite set and then f(x) is the joint distribution P(X = x)

Setup

i=1

• Given $A \subseteq [m]$, let

• $X_A = (X_a)_{a \in A}$

$$\mathscr{X}_A = \prod_{a \in A} \mathscr{X}_a$$

variables grouped together

Setup

• Given a partition $A_1 | \cdots | A_k$ of [m], let $f(x_{A_1}, \ldots, x_{A_k})$ denote f with some

Marginalization

Def: Let $A \subseteq [m]$. The marginal density $f_A(x_A)$ of X_A is obtained by integrating out $x_{[m]\setminus A}$

 $f_A(x_A) := \int_{x_{[m]\setminus A}} f(x_A, x_{[m]\setminus A}) dx_{[m]\setminus A}$

for all x_A .

Conditioning

Def: Let $A, B \subseteq [m]$ be pairwise disjoint subsets and let $x_R \in \mathcal{X}_R$. The conditional density of X_A given $X_B = x_B$ is defined as

 $f_{A|B}(x_A | x_B) := \begin{cases} \frac{f_A}{f_B} \\ 0 \end{cases}$

$$\frac{f_{A\cup B}(x_A, x_B)}{f_B(x_B)} \quad \text{if } f_B(x_B) > 0,$$

$$0 \quad \text{otherwise}$$

Independence

Def: We say that X_1, \ldots, X_n are mutually independent or completely independent if

$P(X_1 \in B_1, ..., X_n)$

for all measurable sets B_1, \ldots, B_n in appropriate spaces.

function.

$$\in B_n) = \prod_{i=1}^n P(X_i \in B_i)$$

Similar characterizations for cumulative distribution function and density

Def: Let $A, B, C \subseteq [m]$ be pairwise disjoint subsets. We say that X_A is conditionally independent of X_R given X_C if and only if

$$f_{A\cup B|C}(x_A, x_B|x_C)$$

for all x_A, x_B, x_C .

• The notation $X_A \perp X_B \mid X_C$ (or $A \perp B \mid C$) denotes that the random vector X satisfies the conditional independence (CI) statement that X_A is conditionally independent of X_R given X_C .

Conditional independence

- $= f_{A|C}(x_A | x_C) f_{B|C}(x_B | x_C)$

- Let x_B and x_C be such that $f_{B|C}(x_B|x_C)$ is defined and positive.
- Assume that $X_A \perp X_B \mid X_C$ holds.
- Then

 $f_{A|B\cup C}(x_A | x_B, x_C) = \frac{f_{A\cup B|C}(x_A, x_B | x_C)}{f_{B|C}(x_B | x_C)} = f_{A|C}(x_A | x_C).$

• Given X_C , knowing X_R does not give any information about X_A .

Conditional independence

Marginal independence

- independence statement.
- It corresponds to the factorization of densities

• This is the same as the independence of random variables.

• A statement of the form $X_A \perp X_B := X_A \perp X_B | X_{\varnothing}$ is called a marginal

 $f_{A \cup B}(x_A, x_R) = f_A(x_A)f_B(x_R).$

Conditional independence axioms

- same random vector satisfy?
- relations can be deduced.
- rules.

• Suppose a random vector X satisfies a set of conditional independence statements. Which other conditional independence relations must the

• There is no finite set of axioms from which all conditional independence

• There are some easy conditional independence implications, which are called the conditional independence axioms or conditional independence

Conditional independence axioms

- Prop: Let $A, B, C, D \subseteq [m]$ be pairwise disjoint subsets. Then
- (symmetry) $X_A \perp X_B \mid X_C \implies X_B \perp X_A \mid X_C$
- (decomposition) $X_A \perp X_{B \cup D} \mid X_C \implies X_A \perp X_B \mid X_C$
- (weak union) $X_A \perp X_{B \cup D} \mid X_C \implies X_A \perp X_B \mid X_C \cup D$
- (contraction) $X_A \perp X_B \mid X_{C \cup D}$ and $X_A \perp X_D \mid X_C \implies X_A \perp X_{B \cup D} \mid X_C$

Intersection axiom

Prop (Intersection axiom): Suppose that f(x) > 0 for all x. Then

$$X_A \perp X_B \mid X_{C \cup D} \text{ and } X_A \perp$$

- The condition f(x) > 0 for all x is stronger than necessary.
- For discrete random variables, precise conditions can be given which guarantee that the intersection axiom holds. This is done using algebra!

- $X_C | X_{B \cup D} \implies X_A \perp X_{B \cup C} | X_D.$

Discrete conditional independence models

- A vector of discrete random variables X_1, \ldots, X_m
- X_i takes values in $[r_i]$
- *X* takes values in $\mathscr{R} = \prod_{j=1}^{m} [r_j]$ i=1
- For $A \subseteq [m], \mathscr{R}_A = [r_a]$ a∈A

Discrete conditional independence models

Prop: If X is a discrete random vector, then the conditional independence statement $X_A \perp X_B \mid X_C$ holds if and only if

 $p_{i_A,i_B,i_C,+} \cdot p_{j_A,j_B,i_C,+}$

for all $i_A, j_A \in \mathcal{R}_A, i_B, j_B \in \mathcal{R}_B$ and $i_C \in \mathcal{R}_B$

can be written as

$$p_{i_A,i_B,i_C,+} =$$

$$-p_{i_A, j_B, i_C, +} \cdot p_{j_A, i_B, i_C, +} = 0$$

$$\mathscr{R}_{C}$$

The notation $p_{i_A,i_B,i_C,+}$ denotes the probability $P(X_A = i_A, X_B = i_B, X_C = i_C)$ which

Conditional independence ideal

Def: The conditional independence ideal $I_{A \perp \mid B \mid C}$ is generated by the polynomials $p_{i_A,i_B,i_C,+} \cdot p_{j_A,j_B,i_C,+} - p_{i_A,j_B,i_C,+} \cdot p_{j_A,i_B,i_C,+} \text{ for all } i_A, j_A \in \mathcal{R}_A, i_B, j_B \in \mathcal{R}_B \text{ and } i_C \in \mathcal{R}_C.$

Def: The probability simplex in $\mathbb{R}^{\mathscr{R}}$ is

$$\Delta_{\mathscr{R}} = \left\{ p \in \mathbb{R}^{\mathscr{R}} : \right.$$

Def: The discrete conditional independence model is $\mathcal{M}_{A \perp\!\!\!\perp B \mid\! C} := V_{\Delta}(I_{A \perp\!\!\!\mid B \mid\! C}) \subseteq \Delta_{\mathcal{R}}$.

Example: Let m = 2 and consider the ordinary independence statement $X_1 \perp X_2$. Then

$$I_{1 \perp 2} = \langle p_{i_1, j_1} p_{i_2, j_2} - p_{i_1, j_2} \rangle$$

$$\sum_{i\in\mathscr{R}} p_i = 1, p_i \ge 0 \text{ for all } i$$

 $_{j_2}p_{i_2,j_1}: i_1, i_2 \in [r_1], j_1, j_2 \in [r_2] \rangle.$

Conditional independence ideal

- If $\mathscr{C} = \{X_{A_1} \perp X_{B_1} \mid X_{C_1}, X_{A_2} \perp X_{B_2} \mid X_{C_2}, \dots\}$ is a set of conditional defined as
 - $I_{\mathscr{C}} =$ $A \bot$
- that satisfy all the conditional independence statements in \mathscr{C} .

independence statements, then the conditional independence ideal is

$$\sum_{\substack{LB|C\in\mathscr{C}}} I_{A \perp LB \mid C}$$

• The model $M_{\mathscr{C}} := V_{\Delta}(I_{\mathscr{C}}) \subseteq \Delta_{\mathscr{R}}$ consists of all probability distributions

Next time

- Statistics primer
- Pretask: lacksquare
 - Read Chapters 5.1-5.2 (pages 99-104)
 - Answer the following questions:
 - 1. What is the difference between probability and statistics?
 - 2. Can a model be parametric and implicit?
 - the two notations?

3. The book uses X_1, \ldots, X_m and $X^{(1)}, \ldots, X^{(n)}$. What is the difference between