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Agenda

• Conditional independence: definition and axioms


• Conditional independence ideals


• Mostly traditional lecture, one or two short worksheet tasks in Breakout 
rooms


• At the beginning of the next lecture, we will continue with the same topic: 
primary decompositions of conditional independence ideals





Setup
• Random vector  


•  takes values in a Cartesian product space 


• We assume that either:


•  has density  that is continuous on , or


•  is a finite set and then  is the joint distribution 

X = (X1, …, Xm)

X 𝒳 =
m

∏
i=1

𝒳i

X f(x) = f(x1, …, xn) 𝒳

𝒳 f(x) P(X = x)



Setup

• Given , let 


• 


• 


• Given a partition  of , let  denote  with some 
variables grouped together

A ⊆ [m]

XA = (Xa)a∈A

𝒳A = ∏
a∈A

𝒳a

A1 |⋯ |Ak [m] f(xA1
, …, xAk

) f



Marginalization

Def: Let . The marginal density  of  is obtained by 
integrating out 


 


for all .

A ⊆ [m] fA(xA) XA
x[m]\A

fA(xA) := ∫x[m]\A

f(xA, x[m]\A)dx[m]\A

xA



Conditioning

Def: Let  be pairwise disjoint subsets and let . The 
conditional density of  given  is defined as


 

A, B ⊆ [m] xB ∈ 𝒳B
XA XB = xB

fA|B(xA |xB) := {
fA∪B(xA, xB)

fB(xB) if fB(xB) > 0,

0 otherwise .



Independence
Def: We say that  are mutually independent or completely 
independent if


 


for all measurable sets  in appropriate spaces.


• Similar characterizations for cumulative distribution function and density 
function.

X1, …, Xn

P(X1 ∈ B1, …, Xn ∈ Bn) =
n

∏
i=1

P(Xi ∈ Bi)

B1, …, Bn



Conditional independence
Def: Let  be pairwise disjoint subsets. We say that  is 
conditionally independent of  given  if and only if


 


for all .


• The notation  (or ) denotes that the random vector 
 satisfies the conditional independence (CI) statement that  is 

conditionally independent of  given  .

A, B, C ⊆ [m] XA
XB XC

fA∪B|C(xA, xB |xC) = fA|C(xA |xC)fB|C(xB |xC)

xA, xB, xC

XA ⊥⊥ XB |XC A ⊥⊥ B |C
X XA

XB XC



Conditional independence
• Let  and  be such that  is defined and positive.


• Assume that  holds.


• Then


.


• Given , knowing  does not give any information about .

xB xC fB|C(xB |xC)

XA ⊥⊥ XB |XC

fA|B∪C(xA |xB, xC) =
fA∪B|C(xA, xB |xC)

fB|C(xB |xC)
= fA|C(xA |xC)

XC XB XA



Marginal independence

• A statement of the form  is called a marginal 
independence statement.


• It corresponds to the factorization of densities


.


• This is the same as the independence of random variables. 

XA ⊥⊥ XB := XA ⊥⊥ XB |X∅

fA∪B(xA, xB) = fA(xA)fB(xB)



Conditional independence axioms

• Suppose a random vector  satisfies a set of conditional independence 
statements. Which other conditional independence relations must the 
same random vector satisfy?


• There is no finite set of axioms from which all conditional independence 
relations can be deduced.


• There are some easy conditional independence implications, which are 
called the conditional independence axioms or conditional independence 
rules.

X



Conditional independence axioms

Prop: Let  be pairwise disjoint subsets. Then


• (symmetry) 


• (decomposition) 


• (weak union) 


• (contraction) 

A, B, C, D ⊆ [m]

XA ⊥⊥ XB |XC ⟹ XB ⊥⊥ XA |XC

XA ⊥⊥ XB∪D |XC ⟹ XA ⊥⊥ XB |XC

XA ⊥⊥ XB∪D |XC ⟹ XA ⊥⊥ XB |XC∪D

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XD |XC ⟹ XA ⊥⊥ XB∪D |XC



Intersection axiom

Prop (Intersection axiom): Suppose that  for all . Then


.


• The condition  for all  is stronger than necessary. 


• For discrete random variables, precise conditions can be given which 
guarantee that the intersection axiom holds. This is done using algebra!

f(x) > 0 x

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D ⟹ XA ⊥⊥ XB∪C |XD

f(x) > 0 x



Discrete conditional independence models

• A vector of discrete random variables 


•  takes values in 


•  takes values in 


• For , 

X1, …, Xm

Xj [rj]

X ℛ =
m

∏
j=1

[rj]

A ⊆ [m] ℛA = ∏
a∈A

[ra]



Discrete conditional independence models

Prop: If  is a discrete random vector, then the conditional independence statement 
 holds if and only if


 


for all  and .


•  The notation  denotes the probability  which 
can be written as


. 

X
XA ⊥⊥ XB |XC

piA,iB,iC,+ ⋅ pjA,jB,iC,+ − piA,jB,iC,+ ⋅ pjA,iB,iC,+ = 0

iA, jA ∈ ℛA, iB, jB ∈ ℛB iC ∈ ℛC

piA,iB,iC,+ P(XA = iA, XB = iB, XC = iC)

piA,iB,iC,+ = ∑
j[m]\A∪B∪C∈ℛ[m]\A∪B∪C

piA,iB,iC,j[m]\A∪B∪C





Conditional independence ideal
Def: The conditional independence ideal  is generated by the polynomials 

 for all  and .


Def: The probability simplex in  is


.


Def: The discrete conditional independence model is .


Example: Let  and consider the ordinary independence statement . Then


 .

IA⊥⊥B|C
piA,iB,iC,+ ⋅ pjA,jB,iC,+ − piA,jB,iC,+ ⋅ pjA,iB,iC,+ iA, jA ∈ ℛA, iB, jB ∈ ℛB iC ∈ ℛC

ℝℛ

Δℛ = {p ∈ ℝℛ : ∑
i∈ℛ

pi = 1,pi ≥ 0 for all i}
ℳA⊥⊥B|C := VΔ(IA⊥⊥B|C) ⊆ Δℛ

m = 2 X1 ⊥⊥ X2

I1⊥⊥2 = ⟨pi1,j1pi2,j2 − pi1,j2pi2,j1 : i1, i2 ∈ [r1], j1, j2 ∈ [r2]⟩



Conditional independence ideal

• If  is a set of conditional 
independence statements, then the conditional independence ideal is 
defined as


.


• The model  consists of all probability distributions 
that satisfy all the conditional independence statements in .

𝒞 = {XA1
⊥⊥ XB1

|XC1
, XA2

⊥⊥ XB2
|XC2

, …}

I𝒞 = ∑
A⊥⊥B|C∈𝒞

IA⊥⊥B|C

ℳ𝒞 := VΔ(I𝒞) ⊆ Δℛ
𝒞



Next time
• Statistics primer


• Pretask: 


• Read Chapters 5.1-5.2 (pages 99-104)


• Answer the following questions:


1. What is the difference between probability and statistics?


2. Can a model be parametric and implicit?


3. The book uses  and . What is the difference between 
the two notations?

X1, …, Xm X(1), …, X(n)


