Worksheet 3

MS-E1621, Algebraic Statistics

September 23, 2020

Group members: Write your names here.

1 Conditional independence axioms

Fill out blanks in the proof of Proposition 1.0.1. We start by recalling some definitions from the lecture.

Definition 1.0.1. Let $A \subseteq [m]$. The marginal density $f_A(x_A)$ of X_A is obtained by integrating out $x_{[m]\setminus A}$

$$f_A(x_A) := \int_{x_{[m]\setminus A}} f(x_a, x_{[m]\setminus A}) dx_{[m]\setminus A}$$

for all x_A .

Let $A, B \subseteq [m]$ be pairwise disjoint subsets and let $x_B \in \mathcal{X}_B$. The conditional density of X_A given $X_B = x_B$ is defined as

$$f_{A|B}(x_A|x_B) := \begin{cases} \frac{f_{A\cup B}(x_A, x_B)}{f_B(x_B)} & \text{if } f_B(x_B) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 1.0.2. Let $A, B, C \subseteq [m]$ be pairwise disjoint subsets. We say that X_A is conditionally independent of X_B given X_C if and only if

 $f_{A\cup B|C}(x_A, x_B|x_C) = f_{A|C}(x_A|x_C)f_{B|C}(x_B|x_C)$

for all x_A, x_B, x_C .

Proposition 1.0.1. Let $A, B, C, D \subseteq [m]$ be pairwise disjoint subsets. Then

- (i) (symmetry) $X_A \perp \!\!\!\perp X_B | X_C \implies X_B \perp \!\!\!\perp X_A | X_C$
- (ii) (decomposition) $X_A \perp \!\!\!\perp X_{B \cup D} | X_C \implies X_A \perp \!\!\!\perp X_B | X_C$
- (iii) (weak union) $X_A \perp \!\!\!\perp X_{B \cup D} | X_C \implies X_A \perp \!\!\!\perp X_B | X_{C \cup D}$
- (iv) (contraction) $X_A \perp \!\!\!\perp X_B | X_{C \cup D}$ and $X_A \perp \!\!\!\perp X_D | X_C \implies X_A \perp \!\!\!\perp X_{B \cup D} | X_C$

Proof. (i) The proof of the symmetry axiom follows from ______ (select one: associativity / commutativity / distributivity) of multiplication.

(ii) Assume that $X_A \perp \perp X_{B \cup D} | X_C$ holds. By Definition 1.0.2, this is equivalent to the factorization of densities

Marginalizing this expression over X_D (i.e. integrating out x_D from both sides of the equation, see the first part of Definition 1.0.1) gives

This is equivalent to the conditional independence statement $X_A \perp \!\!\!\perp X_B | X_C$. (iii) As in (ii), the conditional independence statement $X_A \perp \!\!\!\perp X_{B \cup D} | X_C$ is equivalent to Equation (1). Conditioning on X_D (i.e. dividing through by $f_{D|C}(x_D|x_C)$, see the second part of Definition 1.0.1) gives

This is equivalent to the conditional independence statement $X_A \perp \perp X_B | X_{C \cup D}$. (iv) Let x_C be such that $f(x_C) > 0$. By $X_A \perp \perp X_B | X_{C \cup D}$, we have (use Definition 1.0.2)

Multiplying by $f_{C\cup D}(x_C, x_D)$ gives

 $f_{A\cup B\cup C\cup D}(x_A, x_B, x_C, x_D) = \underline{\qquad} \cdot f_{B|C\cup D}(x_B|x_C, x_D).$

Dividing by $f(x_C) > 0$ we obtain

 $f_{A\cup B\cup D|C}(x_A, x_B, x_D|x_C) = \underline{\qquad} \cdot f_{B|C\cup D}(x_B|x_C, x_D).$

Using the conditional independence statement $X_A \perp \!\!\perp X_D | X_C$, we get

$$f_{A\cup B\cup D|C}(x_A, x_B, x_D|x_C) = \underbrace{-}_{f_{A|C}(x_A|x_C)f_{B\cup D|C}(x_B, x_D|x_C)} \cdot f_{B|C\cup D}(x_B|x_C, x_D) \\ f_{A|C}(x_A|x_C)f_{B\cup D|C}(x_B, x_D|x_C),$$

which means $X_A \perp \!\!\!\perp X_{B \cup D} | X_C$.

2 Conditional independence ideals

Write down the conditional independence ideals below. First we recall useful results from the lecture.

Proposition 2.0.1. If X is a discrete random vector, then the conditional independence statement $X_A \perp \!\!\perp X_B | X_C$ holds if and only if

 $p_{i_A,i_B,i_C,+} \cdot p_{j_A,j_B,i_C,+} - p_{i_A,j_B,i_C,+} \cdot p_{j_A,i_B,i_C,+} = 0$

for all $i_A, j_A \in \mathcal{R}_A, i_B, j_B \in \mathcal{R}_B$ and $i_C \in \mathcal{R}_C$.

The notation $p_{i_A,i_B,i_C,+}$ denotes the probability $P(X_A=i_A,X_B=i_B,X_C=i_C)$ which can be written as

$$p_{i_A,i_B,i_C,+} = \sum_{j_{[m]\setminus A\cup B\cup C}\in\mathcal{R}_{[m]\setminus A\cup B\cup C}} p_{i_A,i_B,i_C,j_{[m]\setminus A\cup B\cup C}}.$$

Let m = 3.

• Consider the marginal independence statement $I_{1\perp 2}$. Suppose $r_3 = 2$, then the conditional independence ideal is

$$I_{1\perp 2} = \langle \dots \rangle.$$

• Consider the conditional independence statement $I_{1 \perp \!\!\! \perp 2 \mid \!\!\! 3}.$ The conditional independence ideal is

$$I_{1 \perp \! \perp 2 \mid 3} = \langle \ldots \rangle.$$