Worksheet 3

MS-E1621, Algebraic Statistics

September 23, 2020

Group members: Write your names here

1 Conditional independence axioms

Fill out blanks in the proof of Proposition 1.0.1. We start by recalling some definitions from the lecture.

Definition 1.0.1. Let $A \subseteq[m]$. The marginal density $f_{A}\left(x_{A}\right)$ of X_{A} is obtained by integrating out $x_{[m] \backslash A}$

$$
f_{A}\left(x_{A}\right):=\int_{x_{[m] \backslash A}} f\left(x_{a}, x_{[m] \backslash A}\right) d x_{[m] \backslash A}
$$

for all x_{A}.
Let $A, B \subseteq[m]$ be pairwise disjoint subsets and let $x_{B} \in \mathcal{X}_{B}$. The conditional density of X_{A} given $X_{B}=x_{B}$ is defined as

$$
f_{A \mid B}\left(x_{A} \mid x_{B}\right):= \begin{cases}\frac{f_{A \cup B}\left(x_{A}, x_{B}\right)}{f_{B}\left(x_{B}\right)} & \text { if } f_{B}\left(x_{B}\right)>0 \\ 0 & \text { otherwise } .\end{cases}
$$

Definition 1.0.2. Let $A, B, C \subseteq[m]$ be pairwise disjoint subsets. We say that X_{A} is conditionally independent of X_{B} given X_{C} if and only if

$$
f_{A \cup B \mid C}\left(x_{A}, x_{B} \mid x_{C}\right)=f_{A \mid C}\left(x_{A} \mid x_{C}\right) f_{B \mid C}\left(x_{B} \mid x_{C}\right)
$$

for all x_{A}, x_{B}, x_{C}.
Proposition 1.0.1. Let $A, B, C, D \subseteq[m]$ be pairwise disjoint subsets. Then
(i) (symmetry) $X_{A} \Perp X_{B}\left|X_{C} \Longrightarrow X_{B} \Perp X_{A}\right| X_{C}$
(ii) (decomposition) $X_{A} \Perp X_{B \cup D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C}$
(iii) (weak union) $X_{A} \Perp X_{B \cup D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C \cup D}$
(iv) (contraction) $X_{A} \Perp X_{B} \mid X_{C \cup D}$ and $X_{A} \Perp X_{D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B \cup D}\right| X_{C}$

Proof. (i) The proof of the symmetry axiom follows from \qquad (select one: associativity / commutativity / distributivity) of multiplication.
(ii) Assume that $X_{A} \Perp X_{B \cup D} \mid X_{C}$ holds. By Definition 1.0.2, this is equivalent to the factorization of densities
\qquad
Marginalizing this expression over X_{D} (i.e. integrating out x_{D} from both sides of the equation, see the first part of Definition 1.0.1) gives

This is equivalent to the conditional independence statement $X_{A} \Perp X_{B} \mid X_{C}$. (iii) As in (ii), the conditional independence statement $X_{A} \Perp X_{B \cup D} \mid X_{C}$ is equivalent to Equation (1). Conditioning on X_{D} (i.e. dividing through by $f_{D \mid C}\left(x_{D} \mid x_{C}\right)$, see the second part of Definition 1.0.1) gives

This is equivalent to the conditional independence statement $X_{A} \Perp X_{B} \mid X_{C \cup D}$. (iv) Let x_{C} be such that $f\left(x_{C}\right)>0$. By $X_{A} \Perp X_{B} \mid X_{C \cup D}$, we have (use Definition 1.0.2)

Multiplying by $f_{C \cup D}\left(x_{C}, x_{D}\right)$ gives

$$
f_{A \cup B \cup C \cup D}\left(x_{A}, x_{B}, x_{C}, x_{D}\right)=
$$

Dividing by $f\left(x_{C}\right)>0$ we obtain

$$
f_{A \cup B \cup D \mid C}\left(x_{A}, x_{B}, x_{D} \mid x_{C}\right)=
$$

Using the conditional independence statement $X_{A} \Perp X_{D} \mid X_{C}$, we get

$$
\begin{aligned}
& f_{A \cup B \cup D \mid C}\left(x_{A}, x_{B}, x_{D} \mid x_{C}\right) \\
&= \\
&=f_{B \mid C \cup D}\left(x_{B} \mid x_{C}, x_{D}\right) \\
& f_{A \mid C}\left(x_{A} \mid x_{C}\right) f_{B \cup D \mid C}\left(x_{B}, x_{D} \mid x_{C}\right)
\end{aligned}
$$

which means $X_{A} \Perp X_{B \cup D} \mid X_{C}$.

2 Conditional independence ideals

Write down the conditional independence ideals below. First we recall useful results from the lecture.

Proposition 2.0.1. If X is a discrete random vector, then the conditional independence statement $X_{A} \Perp X_{B} \mid X_{C}$ holds if and only if

$$
p_{i_{A}, i_{B}, i_{C},+} \cdot p_{j_{A}, j_{B}, i_{C},+}-p_{i_{A}, j_{B}, i_{C},+} \cdot p_{j_{A}, i_{B}, i_{C},+}=0
$$

for all $i_{A}, j_{A} \in \mathcal{R}_{A}, i_{B}, j_{B} \in \mathcal{R}_{B}$ and $i_{C} \in \mathcal{R}_{C}$.

The notation $p_{i_{A}, i_{B}, i_{C},+}$ denotes the probability $P\left(X_{A}=i_{A}, X_{B}=i_{B}, X_{C}=\right.$ i_{C}) which can be written as

$$
p_{i_{A}, i_{B}, i_{C},+}=\sum_{j_{[m] \backslash A \cup B \cup C} \in \mathcal{R}_{[m] \backslash A \cup B \cup C}} p_{i_{A}, i_{B}, i_{C}, j_{[m] \backslash A \cup B \cup C}} .
$$

Let $m=3$.

- Consider the marginal independence statement $I_{1 \Perp 2}$. Suppose $r_{3}=2$, then the conditional independence ideal is

$$
I_{1 \Perp 2}=\langle\ldots\rangle
$$

- Consider the conditional independence statement $I_{1 \Perp 2 \mid 3}$. The conditional independence ideal is

$$
I_{1 \Perp 2 \mid 3}=\langle\ldots\rangle .
$$

