
Worksheet 3

MS-E1621, Algebraic Statistics

September 23, 2020

Group members: Write your names here.

1 Conditional independence axioms

Fill out blanks in the proof of Proposition 1.0.1. We start by recalling some
definitions from the lecture.

Definition 1.0.1. Let A ⊆ [m]. The marginal density fA(xA) of XA is obtained
by integrating out x[m]\A

fA(xA) :=

∫
x[m]\A

f(xa, x[m]\A)dx[m]\A

for all xA.
Let A,B ⊆ [m] be pairwise disjoint subsets and let xB ∈ XB. The conditional

density of XA given XB = xB is defined as

fA|B(xA|xB) :=

{
fA∪B(xA,xB)

fB(xB) if fB(xB) > 0,

0 otherwise.

Definition 1.0.2. Let A,B,C ⊆ [m] be pairwise disjoint subsets. We say that
XA is conditionally independent of XB given XC if and only if

fA∪B|C(xA, xB |xC) = fA|C(xA|xC)fB|C(xB |xC)

for all xA, xB , xC .

Proposition 1.0.1. Let A,B,C,D ⊆ [m] be pairwise disjoint subsets. Then

(i) (symmetry) XA ⊥⊥ XB |XC =⇒ XB ⊥⊥ XA|XC

(ii) (decomposition) XA ⊥⊥ XB∪D|XC =⇒ XA ⊥⊥ XB |XC

(iii) (weak union) XA ⊥⊥ XB∪D|XC =⇒ XA ⊥⊥ XB |XC∪D

(iv) (contraction) XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XD|XC =⇒ XA ⊥⊥ XB∪D|XC
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Proof. (i) The proof of the symmetry axiom follows from (select
one: associativity / commutativity / distributivity) of multiplication.
(ii) Assume that XA ⊥⊥ XB∪D|XC holds. By Definition 1.0.2, this is equivalent
to the factorization of densities

. (1)

Marginalizing this expression over XD (i.e. integrating out xD from both sides
of the equation, see the first part of Definition 1.0.1) gives

.

This is equivalent to the conditional independence statement XA ⊥⊥ XB |XC .
(iii) As in (ii), the conditional independence statement XA ⊥⊥ XB∪D|XC is
equivalent to Equation (1). Conditioning on XD (i.e. dividing through by
fD|C(xD|xC), see the second part of Definition 1.0.1) gives

.

This is equivalent to the conditional independence statement XA ⊥⊥ XB |XC∪D.
(iv) Let xC be such that f(xC) > 0. By XA ⊥⊥ XB |XC∪D, we have (use
Definition 1.0.2)

.

Multiplying by fC∪D(xC , xD) gives

fA∪B∪C∪D(xA, xB , xC , xD) = · fB|C∪D(xB |xC , xD).

Dividing by f(xC) > 0 we obtain

fA∪B∪D|C(xA, xB , xD|xC) = · fB|C∪D(xB |xC , xD).

Using the conditional independence statement XA ⊥⊥ XD|XC , we get

fA∪B∪D|C(xA, xB , xD|xC)

= · fB|C∪D(xB |xC , xD)

fA|C(xA|xC)fB∪D|C(xB , xD|xC),

which means XA ⊥⊥ XB∪D|XC .

2 Conditional independence ideals

Write down the conditional independence ideals below. First we recall useful
results from the lecture.

Proposition 2.0.1. If X is a discrete random vector, then the conditional
independence statement XA ⊥⊥ XB |XC holds if and only if

piA,iB ,iC ,+ · pjA,jB ,iC ,+ − piA,jB ,iC ,+ · pjA,iB ,iC ,+ = 0

for all iA, jA ∈ RA, iB , jB ∈ RB and iC ∈ RC .
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The notation piA,iB ,iC ,+ denotes the probability P (XA = iA, XB = iB , XC =
iC) which can be written as

piA,iB ,iC ,+ =
∑

j[m]\A∪B∪C∈R[m]\A∪B∪C

piA,iB ,iC ,j[m]\A∪B∪C
.

Let m = 3.

• Consider the marginal independence statement I1⊥⊥2. Suppose r3 = 2,
then the conditional independence ideal is

I1⊥⊥2 = 〈...〉.

• Consider the conditional independence statement I1⊥⊥2|3. The conditional
independence ideal is

I1⊥⊥2|3 = 〈...〉.
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