EXERCISE 3.1.

Please calculate the c lattice parameter for the water-derivative phase (b) from the first three (00/) reflections (002, 004, 006); they are at the 2θ angles $6.31,12.65$ and 18.97: tetragonal I4/mmm, $\mathrm{CuK}_{\alpha}=1.5406 \AA$

Lehtimäki, Hirasa, Matvejeff, Yamauchi \& Karppinen, J. Solid State Chem. 180, 3247 (2007).

EXERCISE 3.2.

Below are the lattice parameters a and c calculated for one sample (tetragonal P4/mmm; $\mathrm{Cu}-\mathrm{K}_{\alpha}=$ $1.5406 \AA$ Å) from the 002, 004, 100 and 200 reflections.

Now, please use the 110, 102 and 112 reflections to calculate the lattice parameters, for verification:

$$
\sin ^{2} \theta=\left(h^{2}+k^{2}\right) \cdot \frac{\lambda^{2}}{4 a^{2}}+l^{2} \cdot \frac{\lambda^{2}}{4 c^{2}}
$$

2θ		$h k l$		
22.766	1	0	0	
23.026	0	0	2	
32.411	1	1	0	
32.603	1	0	2	
40.136		1	1	2
46.499	2	0	0	
47.054	0	0	4	

Miller	2θ	$\sin \theta$	$\sin ^{2} \theta$	$\operatorname{Parameter}(\AA)$
002	23.03	0.1996	0.0398	7.724
004	47.05	0.3991	0.1593	7.725
100	22.77	0.1947	0.0390	3.905
200	46.50	0.3947	0.1558	3.906

EXERCISE 3.3.

Please index the diffraction pattern below; the unit cell is cubic. What are the lattice parameters and what is the centering? $\lambda=1.5406 \AA(\mathrm{Cu} \mathrm{Ka})$

EXERCISE 3.4.

For an unknown crystalline material the following analysis data are available:

- Elemental analysis: Ba 89.57 p-\%, O 10.43 p-\% (atomic weights: Ba 137.33; O 15.9994)
- Density: $5.922 \mathrm{~g} / \mathrm{cm}^{3}\left(N_{A}=6.022 \times 10^{23}\right)$
- Peaks in powder XRD pattern $\left(\mathrm{CuK}_{\alpha}: \lambda=1.5406 \AA\right.$) at 2θ angles:
$27.88,32.30,46.32,54.92,57.60,67.60,74.62,76.90,85.88,92.54$
a. Assign Miller indices for the diffraction peaks assuming cubic NaCl type unit cell.
b. Calculate lattice parameter a.
c. Draw the unit cell.
d. What is Z ?
e. Calculate Ba-O bond length.

EXERCISE 3.5.

Please shortly explain the important observations (up to four!) you can make from the figure below.

EXERCISE 3.6.

On the lecture slides (Lec 6) there is a sentence:
For ND, no "bonding effects" in atomic positions \rightarrow Important when hydrogen-bonded structures are studied \rightarrow ND reveals typically ~0.2 A longer O-H bonds than XRD.
Please try to explain this in more detail.
HINT: consider the electron densities in hydrogen bonds
\longleftarrow Hydrogen bond \longrightarrow

