EXERCISE 3.1.

20.2 Å

Please calculate the c lattice parameter for the water-derivative phase (b) from the first three (00/) reflections (002, 004, 006); they are at the 2θ angles 6.31, 12.65 and 18.97: tetragonal I4/*mmm*, CuK_{α} = 1.5406 Å

Lehtimäki, Hirasa, Matvejeff, Yamauchi & Karppinen, J. Solid State Chem. 180, 3247 (2007).

EXERCISE 3.2.

Below are the lattice parameters a and c calculated for one sample (tetragonal *P*4/*mmm*; Cu-K_{α} = 1.5406 Å) from the 002, 004, 100 and 200 reflections.

Now, please use the 110, 102 and 112 reflections to calculate the lattice parameters, for verification:

$$\sin^2\theta = (h^2 + k^2) \cdot \frac{\lambda^2}{4a^2} + l^2 \cdot \frac{\lambda^2}{4c^2}$$

2 0	hkl		
22.766	100		
23.026	0 0 2		
32.411	1 1 0		
32.603	102		
40.136	1 1 2		
46.499	200		
47.054	0 0 4		

Miller	20	sinθ	$\sin^2\theta$	Parameter (Å)
002	23.03	0.1996	0.0398	7.724
004	47.05	0.3991	0.1593	7.725
100	22.77	0.1947	0.0390	3.905
200	46.50	0.3947	0.1558	3.906

EXERCISE 3.3.

Please index the diffraction pattern below; the unit cell is cubic. What are the lattice parameters and what is the centering? λ =1.5406 Å (Cu K α)

EXERCISE 3.4.

For an unknown crystalline material the following analysis data are available:

- Elemental analysis: Ba 89.57 p-%, O 10.43 p-% (atomic weights: Ba 137.33; O 15.9994)
- Density: 5.922 g/cm³ ($N_A = 6.022 \times 10^{23}$)
- Peaks in powder XRD pattern (Cu K_{α} : λ = 1.5406 Å) at 2 θ angles:

27.88, 32.30, 46.32, 54.92, 57.60, 67.60, 74.62, 76.90, 85.88, 92.54

- *a.* Assign Miller indices for the diffraction peaks assuming cubic NaCl type unit cell.
- b. Calculate lattice parameter a.
- c. Draw the unit cell.
- d. What is Z?
- e. Calculate Ba-O bond length.

EXERCISE 3.5.

Please shortly explain the important observations (up to four!) you can make from the figure below.

EXERCISE 3.6.

On the lecture slides (Lec 6) there is a sentence:

For ND, no "bonding effects" in atomic positions \rightarrow Important when hydrogen-bonded structures are studied \rightarrow ND reveals typically ~0.2 Å longer O-H bonds than XRD.

Please try to explain this in more detail.

HINT: consider the electron densities in hydrogen bonds

