
Chapter 6

Degree distributions

6.1 Mean degrees in stochastic block models

In this section we will study a stochastic block model with n nodes and
m communities, having density parameter ⇢ and block interaction matrix K.
This is an inhomogeneous Bernoulli random graph G on node set [n] where
the link probabilities are of the form

pij = ⇢Kzi,zj ,

where ⇢ > 0 is scalar, z = (z1, . . . , zn) is a list of node attributes with values
in [m], and K is a symmetric nonnegative m-by-m matrix. The labelling
i 7! zi partitions the node set [n] into m disjoint blocks Cs = {i : zi = s},
and the relative size of block s is denoted by

µs =
1

n

nX

i=1

1(zi = s).

The vector (µs)ms=1
is a probability distribution on [m] called the empirical

block membership distribution, and µs can be interpreted as the probability
that a randomly selected node belongs to block Cs. The following result
describes the expected degrees in the model.

Theorem 6.1. For a stochastic block model with smallest relative block size
µmin = mins µs, the expected degree of any node i in community s satisfies

E deg
G
(i) = n⇢�s � ⇢Ks,s = (1� ✏1)n⇢�s (6.1)

and the expected average degree equals

E deg
G
(U) = n⇢�� ⇢

X

s

µsKs,s = (1� ✏2)n⇢�, (6.2)

where �s =
P

t
Ks,tµt, � =

P
s,t
µsKs,tµt, and 0  ✏1, ✏2  (nµmin)�1.
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Proof. (i) The degree of node i may be written as deg
G
(i) =

P
j 6=i

Gij where
Gij are independent Ber(pij)-distributed random variables. Hence

E deg
G
(i) =

X

j 6=i

pij =
X

j 6=i

⇢Kzi,zj = ⇢
nX

j=1

Kzi,zj � ⇢Kzi,zi

Because zi = s and the number of nodes in community t equals nµt, we
find that

P
n

j=1
Kzi,zj =

P
m

t=1
Ks,tnµt = n�s, and the first equality in (6.1)

follows. To verify the second equality in (6.1), note that

0  ✏1 =
Ks,s

n�s

=
Ks,sµs

n�sµs


P

t
Ks,tµt

n�sµs

= (nµs)
�1.

(ii) The expected average degree equals

1

n

nX

i=1

E deg
G
(i) =

1

n

mX

s=1

(nµs)(n⇢�s � ⇢Kss) = n⇢
mX

s=1

µs�s � ⇢
mX

s=1

µsKss.

The first equality in (6.2) hence follows by noting that
P

m

s=1
µs�s = �. Ob-

serve next that
P

s
µsKs,s 

P
s,t
µsKs,t =

P
s,t
µsKs,tµt(µt)�1  (µmin)�1�.

Hence

0  ✏2 =
⇢
P

s
µsKs,s

n⇢�
 1

nµmin

.

Theorem 6.1 shows that the average degree of a random graph generated
by a stochastic block model is of the order n⇢. When overall link density
⇢ = ⇢n depends on the scale, we get di↵erent limiting regimes corresponding
to di↵erent levels of sparsity, see Table 6.1.

Exercise 6.2. Verify that under the assumptions of Theorem 6.1, for a
node in community s, the mean number of neighbors in community t is
approximately n⇢Ks,tµt.

Density Average degree Regime

⇢ ⌧ n
�1

dave ⌧ 1 Very sparse
⇢ ⇡ cn

�1
dave ⇡ c Sparse with bounded degree

n
�1 ⌧ ⇢ ⌧ 1 1 ⌧ dave ⌧ n Sparse with diverging degree

⇢ ⇡ c dave ⇡ cn Dense

Table 6.1: Di↵erent regimes of large graph models.
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6.2 Poisson approximation

The following result, sometimes called Le Cam’s inequality after a famous
Berkeley statistician Lucien Le Cam, illustrates how to apply the stochastic
coupling method to get an upper bound on the distance between a sum of
independent {0, 1}-valued random variables and a Poisson distribution.

Theorem 6.3. Let Ai be independent {0, 1}-valued random variables such
that EAi = ai and

P
i
ai < 1. Then

dtv
⇣
Law(

X

i

Ai), Poi(
X

i

ai)
⌘


X

i

a2
i
.

Proof. By applying (5.3) and Theorem 5.1, we see that for every i there
exists a coupling (Âi, B̂i) of Xi and a Poi(ai)-distributed random integer Bi,
so that

P(Âi 6= B̂i)  ai(1� e�ai). (6.3)

By a standard technique of probability theory, it is possible to construct all
of the bivariate random variables (Âi, B̂i), i 2 I, on a common probability
space and in such a way that these bivariate random variables are mutu-
ally independent (nevertheless, Âi and B̂i are dependent for each i). Then
define Â =

P
i
Âi and B̂ =

P
i
B̂i. Then Law(Â) = Law(

P
i
Ai). More-

over, because the sum of independent Poisson-distributed random integers
is Poisson-distributed, it follows that (Â, B̂) is a coupling of

P
i
Ai and a

Poi(
P

i
ai)-distributed random integer B. By applying (6.3) and the union

bound, this coupling satisfies

P(Â 6= B̂) = P([i2I{Âi 6= B̂i}) 
X

i2I

P(Âi 6= B̂i) 
X

i2I

ai(1� e�ai).

By applying Theorem 5.1, it now follows that

dtv(
X

i

Ai,Poi(
X

i

ai))  P(Â 6= B̂) 
X

i2I

ai(1� e�ai).

This implies the claim after noting that 1� e�ai  ai.

Exercise 6.4. For a sequence of probability distributions we denote µn

tv�! µ
when dtv(µn, µ) ! 0.

(a) Apply Le Cam’s inequality to show that when pn ⌧ n�1/2,

dtv
⇣
Bin(n, pn), Poi(npn)

⌘
! 0.

(b) As a consequence, derive Poisson’s law of small numbers:

Bin

✓
n,

�

n

◆
tv�! Poi(�).
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6.3 Degree distributions in sparse SBMs

6.3.1 Blockwise degree distribution

In a stochastic block model, all nodes in the same block are statistically
identical, and the common degree distribution of nodes in block s is here
denoted by fs. We denote by entrywise max norm of a matrix by kKk

max
=

maxs,t |Ks,t|. As corollary of the following theorem, it follows that fs is
accurately approximated by a Poisson distribution when ⇢ = ⇢n satisfies
⇢n ⌧ n�1/2.

Theorem 6.5. In a stochastic block model, the degree distribution fs =
Law(deg

G
(i)) of any node i in block s is approximated by a Poisson dis-

tribution gs = Poi(n⇢�s) according to

dtv(fs, gs)  kKk2
max

n⇢2 + kKk
max

⇢,

where �s =
P

t
Ks,tµt.

Proof. The degree of node i in block s may be written as deg
G
(i) =

P
j 6=i

Gij

where Gij are mutually independent Ber(pij)-distributed random variables.
By Theorem 6.1, we know that the mean of deg

G
(i) equals `s = n⇢�s�⇢Ks,s.

By Le Cam’s inequality (Theorem 6.3), it follows that

dtv
⇣
fs, Poi(`s)

⌘

X

j 6=i

p2
ij

= ⇢2
X

j 6=i

(Kzi,zj)
2  n⇢2kKk2

max
,

where kKk
max

= maxs,t |Ks,t| denotes the entrywise max norm of K. Now
by Lemma 5.4 and the inequality 1� t  e�t, it follows that it follows that

dtv
⇣
Poi(`s), Poi(n⇢n�s)

⌘
 |`s � n⇢n�s| = ⇢Ks,s  kKk

max
⇢.

We conclude using the triangle inequality of the total variation metric that

dtv
⇣
fs, Poi(n⇢�s)

⌘
 n⇢2kKk2

max
+ kKk

max
⇢.

6.3.2 Typical degree distribution

By a typical node of a graph G we mean a node U sampled uniformly at
random from the node set of the graph. When the graph is random, the
degree of a typical node deg

G
(U) involves two sources of randomness: the

52



randomness associated with the graph G, and the randomness associated
with the sampling of U .

A mixed Poisson distribution with mixing distribution � is the probability
distribution MPoi(�) on the nonnegative integers with probability density

Ee�⇤
⇤x

x!
, x = 0, 1, . . . ,

where ⇤ is a random variable distributed according to �, a probability dis-
tribution on R+. Samples from MPoi(�) can be generated by first sampling
a random variable ⇤ from �, and conditionally on ⇤ = �, sampling from a
Poisson distribution with mean �.

The distribution g =
P

m

s=1
µsgs in Theorem 6.6 below is a mixed Poisson

with mixing distribution � being a probability distribution on a finite set
{a1, . . . , am} with as = n⇢n�s such that �(as) = µs for all s = 1, . . . ,m.

Theorem 6.6. In a stochastic block model, the degree distribution f =
Law(deg

G
(U)) of a typical node is approximated by a mixed Poisson dis-

tribution g =
P

s
µsgs with gs = Poi(n⇢n�s) according to

dtv(f, g)  kKk2
max

n⇢2 + kKk
max

⇢,

where �s =
P

t
Ks,tµt. Especially, for ⇢n = n�1, the expected relative fre-

quency f(x) = f (n)(x) of nodes of degree x satisfies

f (n)(x) !
mX

s=1

µse
��s

�x

s

x!
.

Proof. Denote by f(x) = P(deg
G
(U) = x) the typical node degree distribu-

tion. Because P(zU = s) = µs, we find that

f(x) =
mX

s=1

µsfs(x),

where fs is the common degree distribution of nodes in block s. By Theo-
rem 6.5

dtv(fs, gs)  kKk2
max

n⇢2 + kKk
max

⇢.

Then (use the L1-distance representation of the total variation distance and
triangle inequalities for the total variation distance),

dtv(f, g) = dtv
⇣X

s

µsfs,
X

s

µsgs
⌘


X

s

µsdtv(fs, gs).
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6.4 Joint degree distribution

Many results related to large random graph rely on the fact that several
local characteristics of the graph are approximately independent for large n.
In statistics it is important to quantify how close certain observables are to
being fully independent. Here we discuss the case of degrees.

Let G(p) be a Bernoulli random graph on node set [n] where each un-
ordered node pair {i, j} is connected by a link with probability pij, indepen-
dently of other node pairs. Denote by

Law(Di : i 2 I)

the joint distribution of the degrees Di = deg
G
(i) for a set of nodes I ⇢ [n].

The degrees Di are not independent, but the dependence is not strong in
large sparse random graphs. We may quantify this by measuring how much
the joint degree distribution deviates from the product distribution

Y

i2I

Law(Di)

which represents the joint distribution of independently sampled random in-
tegers from the distributions Law(Di).

A collection of random variables (Xi :2 I) whose joint distribution de-
pends on a scale parameter n, is called asymptotically independent if

dtv

 
Law(Xi : i 2 I),

Y

i2I

Law(Xi)

!
! 0 as n ! 1.

Theorem 6.7. The joint degree distribution of an arbitrary set of nodes I
in a Bernoulli random graph with link probabilities pij satisfies

dtv

 
Law(Di : i 2 I),

Y

i2I

Law(Di)

!
 4

X

i,j2I:i<j

(1� pij)pij.

As an immediate application of the above theory, we obtain the following
result for sparse SBMs.

Proposition 6.8. For a sparse stochastic block model with density param-
eter ⇢n ⌧ 1 and community link matrix K, the degrees of any set of n0 ⌧
⇢�1/2

n nodes are asymptotically independent.

Proof. For any node set I of size n0,

4
X

i,j2I:i<j

(1� pij)pij  4
X

i,j2I:i<j

pij  4⇢nkKk
max

n2

0
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The right side tends to zero when ⇢nn2

0
! 0 (and the community link matrix

K does not depend on the scale parameter, which we implicitly assume here
throughout).

Proof of Theorem 6.7. The proof is based on a coupling argument described
in [vdH17, Theorem 6.7(b)]. After relabeling the node set if necessary, we
may and will assume that I = {1, 2, . . . ,m}. Let G the adjacency matrix
of the random graph, and let Ĝ be an independent copy of G. That is, we
sample Ĝ from the same distribution as G, independently. Then we define

D̃i =
X

j:j<i

Ĝij +
X

j:j>i

Gij. (6.4)

The random integers D̃i are not degrees of G nor Ĝ. Nevertheless, we see that
Law(D̃i) = Law(Di) because all random variables on the right side above are
independent. Note that

D̃1 = G12 +G13 +G14 + · · ·
D̃2 = Ĝ12 +G23 +G24 + · · ·
D̃3 = Ĝ13 + Ĝ23 +G34 + · · ·

and so on. Because all terms in the three above sums are independent, it
follows that D̃1, D̃2, D̃3 are independent. In fact, one may verify by induction
that D̃1, . . . , D̃n are all mutually independent. Hence so is the sublist D̃I =
(D̂i : i 2 I), and the distribution of the list D̃I equals

Q
i2I Law(Di). Now the

pair (DI , D̃I) constitutes a coupling of Law(DI) and
Q

i2I Law(Di). Hence

dtv

 
Law(Di : i 2 I),

Y

i2I

Law(Di)

!
 P(DI 6= D̃I)

= P
⇣[

i2I

{Di 6= D̃i}
⌘


X

i2I

P(Di 6= D̃i).

From (6.4) we see that D̃i �Di =
P

j:j<i
(Ĝij �Gij). Hence Di = D̃i unless

Gij 6= Ĝij for one or more indices j < i. Therefore

P(Di 6= D̃i)  P([j:j<i{Gij 6= Ĝij}) 
X

j:j<i

P(Gij 6= Ĝij).
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Because

P(Gij 6= Ĝij) = P(Gij = 0, Ĝij = 1) + P(Gij = 1, Ĝij = 0)

= 2(1� pij)pij,

we conclude that

dtv

 
Law(Di : i 2 I),

Y

i2I

Law(Di)

!
 2

X

i2I

X

j2I:j 6=i

(1� pij)pij,

and the claim follows.

Exercise 6.9. If D1 and D2 are asymptotically independent, show that
cov(�(D1,�(D2)) ! 0 for any bounded function �.

6.5 Empirical degree distributions

6.5.1 Empirical distributions of large data sets

To obtain a tractable sparse graph model, we need to impose some regularity
assumptions on the behavior of node attributes. We will denote the empirical
distribution of the list x(n) by

µn(B) =
1

n

nX

i=1

1(x(n)

i
2 B)

returns the relative frequency of node attributes with values in B ⇢ R. Al- example

ternatively, µn is the probability distribution of random variable Xn obtained
by picking an element of the list uniformly at random. We assume that for
large graphs, the distribution of attributes can be approximated by a lim-
iting probability distribution µ on (0,1). More precisely, we assume that
µn ! µ weakly, that is,

E�(Xn) ! E�(X)

for any continuous and bounded function � : (0,1) ! R and random vari-
ables Xn distributed according to µn and X distributed according to µ. We
also say that µn ! µ weakly with k-th moments if in addition EXk

n
! EXk

and EXk

n
, EXk are finite1. For a thorough treatment of the aspects of weak

convergence of probability measures, see for example [Kal02, Section 4]. The
main fact is that when the limiting distribution has a continuous cumulative
distribution F , then µn ! µ weakly if and only if Fn(t) ! F (t) for all t,

where Fn(t) =
1

n

P
n

i=1
1(x(n)

i
 t) is the empirical cumulative distribution of

the list x(n).
1This corresponds to convergence of probability measure in the Wasserstein-k metric.
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Example 6.10 (Random attribute lists). A fundamental example is the
following setting. Assume that X1, X2, . . . are independent random numbers
sampled from a probability distribution µ which has a finite k-th moment.
Then the empirical distribution µn of the listX(n) = (X1, . . . , Xn) is a random
probability distribution. As consequence of the strong law of large numbers
and the Glivenko–Cantelli theorem it follows that with probability one, µn !
µ weakly with k-th moments.

Here, as elsewhere, we denote fn ⌧ gn or fn = o(gn) when fn/gn ! 0.

Lemma 6.11. Assume the empirical distribution of x(n) converges weakly
and with first moments to a probability distribution µ. Then maxi2[n] x

(n)

i
⌧

n.

Proof. Let Xn be a µn-distributed random number for each n. Then by
Lemma A.5, the sequence (Xn) is uniformly integrable, and for any ✏ > 0, it
follows that

nP(Xn > ✏n) = ✏�1E✏n1(Xn > ✏n)  ✏�1EXn1(Xn > ✏n)

 ✏�1 sup
m

EXm1(Xm > ✏n) ! 0.

But this means that

nX

i=1

1(x(n)

i
> ✏n) = n

1

n

nX

i=1

1(x(n)

i
> ✏n) = nP(Xn > ✏n) ! 0.

Because the left side above is integer-valued, we conclude that exists n0 such
that

P
n

i=1
1(x(n)

i
> ✏n) = 0 for all n > n0. This implies that n�1x(n)

i
 ✏ for

all i 2 [n], or equivalently, n�1 maxi2[n] x
(n)

i
 ✏ for all n > n0, and the claim

follows.

6.6 Product-form kernels (not part of Fall 2018

course)

Recall from Section 1.4 the definition of inhomogeneous Bernoulli graphs and
latent position graphs. Many real-world data sets have highly varying degree
distributions, where most nodes have a relatively small degree and a few hub
nodes have an extremely high degree. Such data sets can be modeled as large
inhomogeneous random graphs where the attribute space is S = [0,1) and
the attributes are considered weights. A natural idea is the multiplicative
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