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Stochastic process - definition

I Mapping from the sample space to a function
I Each random outcome corresponds to a realization of a

stochastic process that is a function of “time”
I Sequence of random variables

I Continuous-time processes {Xt , t ≥ 0}
I Discrete-time processes {Xn, n = 1,2, . . .}

I Defined by the n:th order distributions (for all n), e.g.,
I First-order: {fX1(x), fX2(x), . . .}
I Second-order: {fX1,X2(x), fX1,X3(x), . . .}

I All the distributions are needed to include all possible
dependencies
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Stationary processes

I Stochastic process is (strictly) stationary if all of its
distribution functions are invariant under time shifts

I Simpler and more useful conditions, e.g.,
I Wide-sense/weakly stationary process: mean and

autocovariance are invariant in time
I 1st order statistics, mean

I Expectation at time t , E(Xt)

I 2nd order statistics, autocovariance

Rt ,s = E((Xt − E [Xt ])(Xs − E [Xs])) = Cov[Xt ,Xs].

I Wide-sense discrete-time stationary process, for all n, k :

E(Xn) = E(X1), Cov[Xn,Xn+k ] = Cov[X1,Xk+1].
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Autocorrelation

I If a process is at least wide-sense stationary, we can
specify useful properties without regard to the particular
time instant n

I Autocovariance of a wide-sense stationary process
depends only on the lag k between random variables Xi
and Xi+k

I Autocorrelation is normalized autocovariance

r(k) =
Cov[Xn,Xn+k ]

Cov[Xn,Xn]
.
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Example: autocorrelation (acf)
Time serie Histogram acf
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Samples in time serie 1 appear to be i.i.d. (no dependence)
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Some stochastic processes of interest

I Arrival process
I {An, n = 0,1, . . .}, where An is the time instant of the nth

arrival
I Non-decreasing, non-stationary

I Inter-arrival process
I {In, n = 1,2, . . .}, where In = An − An−1 is the length of the

nth inter-arrival time
I Time series of counts

I For a fixed time interval T
I Time series of counts {Cn, n = 0,1, . . .}, where

Cn = #{Am|nT < Am < (n + 1)T}
I Arrivals can be packets, bits, bytes, . . .
I Most common form of reporting network traffic
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Example: session start times
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Poisson process

I Inter-arrival process of Poisson process is such that
I In and Ik are independent for n 6= k
I In obeys Exp(λ) distribution for some parameter λ

I Alternatively, but equivalently: Poisson process is such that
for any T > 0

I Cn and Ck are independent for all n 6= k
I Cn ∼Poisson(λT )

I Poisson process is a widely used arrival process in
performance modeling and analysis

I “Infinitely” large population from which arrivals come
independently

I Often a valid assumption for e.g. human behavior in a large
population

I Good for session arrivals (and phone calls . . . )
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Example

I Are the session start times
from a Poisson process?

I Independent and
exponentially distributed
inter-arrivals?

I ACF, qqplots, ecdf, ...

> arrivals<-scan("testidata.txt");

Read 4360 items

> fitdistr(arrivals,"exponential");

rate

11.2151101

( 0.1698479)

> qqplot(arrivals, qexp(ppoints(arrivals), 11.21511));

abline(0,1, col = 2, lty = 2)
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Poisson conversation . . .

..

Packets arrive according to a
Poisson process with rate . . .

..

But in reality the arrival pro-
cess is NOT POISSONIAN!!
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Dependence structure

I As a single flow can contribute packet or byte arrivals to
several consecutive measurement periods, the
independence assumption of Poisson process breaks
down, e.g., for packet count processes

I If ACF plot reveals that past values contribute to the
present other models must be considered

I Note again that stationary processes are only good for
describing stable data . . .

I Network traffic is generally not stable at long time scales
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Short- and Long-Range Dependence

1. Short-range dependence (SRD):

The coupling between values at different times
decreases rapidly as the lag k increases

No tail: r(k) = 0 for k > θ, or
Exp-tail: r(k) ∼ β−k for k > θ, (for some θ > 0 and β > 1)

2. Long-range dependence (LRD)

The coupling between values at different times
decreases slower than exponentially

Power-law tail: r(k) ∼ k−β , for k > θ (for some θ>0 and 0<β<1)

SRD:
∑∞

k=1 r(k) <∞ LRD:
∑∞

k=1 r(k) =∞
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Time series modeling
I Time series analysis provides suitable models for situations

where autocorrelation shows significant dependence

I Examples from models
I Moving average (MA)

Yn = µ+ Xn + a1Xn−1 + a2Xn−2 + . . .+ ak Xn−k

where E(Xn) = 0 and E(X 2
n ) = σ2.

I Autoregressive (AR)

Yn = Xn + a0 + a1Yn−1 + . . .+ ak Yn−k

where E(Xn) = 0, E(X 2
n ) = σ2, and E(XnXm) = 0 for n 6= m.

I EWMA, ARMA, ARIMA, DAR, . . .
I Well-developed field and especially widely used in signal

processing, econometrics, etc.

I Cf., http://www.statsoft.com/textbook/sttimser.html

http://www.statsoft.com/textbook/sttimser.html
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Scaling

Long-range dependence is closely linked to a special property
of network traffic; its scaling behavior

Rescaled view of traffic (e.g. time series of byte counts)

X (m)
n ,

nm+m−1∑
i=nm

Xi .

If the original data was observed on a time scale T , the
rescaled process is observed on time scale Tm
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Self-similarity

I A zero mean stochastic process {Xn} is called self-similar with
Hurst parameter H if, for all m, the aggregated process {X (m)}
has the same distribution as {mHXn}, i.e.,

{mHXn}
d
={X (m)}, m > 0 and 1/2 ≤ H < 1.

I Process can be self-similar only if it is LRD:

I In fact, asymptotically autocorrelation r(k) ∼ k2H−2

I Self-similarity means that r (m)(k) = r(k), with k ,m > 0

“Self-similar processes have the same autocorrelation
function on all time scales”

I (Nonself-similar: r (m)(k)→ 0 as m→∞ for k = 0,1,2, . . .)

I Self-similarity describes how the variability of the process scales



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

18/25

Self-similarity in Network Traffic

Real traffic from Synthetic traffic Synthethic traffic
Internet Traffic Archive with H = 0.83 with H = 0.5

Timescale: 10 ms

Source: Crovella, Krishnamurthy: Internet Measurement: Infrastructure, Traffic &
Applications, Wiley, 2006.
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Self-similarity in Network Traffic

Real traffic from Synthetic traffic Synthethic traffic
Internet Traffic Archive with H = 0.83 with H = 0.5

Timescale: 100 ms

Source: Crovella, Krishnamurthy: Internet Measurement: Infrastructure, Traffic &
Applications, Wiley, 2006.
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Self-similarity in Network Traffic

Real traffic from Synthetic traffic Synthethic traffic
Internet Traffic Archive with H = 0.83 with H = 0.5

Timescale: 1 s

Source: Crovella, Krishnamurthy: Internet Measurement: Infrastructure, Traffic &
Applications, Wiley, 2006.
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Self-similarity in Network Traffic

Real traffic from Synthetic traffic Synthethic traffic
Internet Traffic Archive with H = 0.83 with H = 0.5

Timescale: 10 s

Source: Crovella, Krishnamurthy: Internet Measurement: Infrastructure, Traffic &
Applications, Wiley, 2006.
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Measuring self-similarity

I Self-similarity results from variety of factors, but the main
cause is the long-range dependency caused by
heavytailed file/flow-size distributions

I Simplest way of estimating the Hurst parameter H is called
the aggregated variance method:

I Let Xn be a series of counts
I Plot the variance of m−1X (m) against m on a log-log scale
I If the original data is well modeled with a self-similar

process, then the variance of m−1X (m) will follow m2H−2

Plot should show a straight line with slope −β greater than −1
I H = 1− β/2

I Other, more efficient, methods exist but are beyond the
scope of our course
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Example (simple)

I Let Xn be i.i.d. random variables, Xn ∼ Pareto(100,1.5)

I I.e., infinite variance, with a finite mean E(X ) = 300

I Compute aggregates X (m)/m
for m = 21,22,23, . . . and
their sample variance s2

(m)

I Mean remains the same,
E(X ) = 300

I Plot log m against log s2
(m)

Linear fit
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Slope is −1, i.e., H = 0.5 and process is not self-similar(!)
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Why self-similarity?

I Self-similarity is a parsimonious model to describe the
variability of traffic on different time scales

I Self-similarity has fundamental effects on queuing behavior
of traffic and hence it is interesting in performance analysis

I Recognition of the phenomenon is seen as a fundamental
step forward in the way analysts think about traffic

I However, it is easy to mix with non-stationarity
I Hurst parameter estimates from a non-stable data will be

misleading
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