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Parameter estimation

Fundamental goals:

+ Estimation methods: computationally manageable estimators
under a chosen optimality criterion.

» Performance bounds: tools for performance analysis, system
design, and feasibility study.

» Performance analysis: we compare the performance of an
estimator to the bound. Method for establishing optimality
of an estimator.

» System design: we investigate the bound’s behavior under
different conditions on our system.

+ Feasibility study: we study the optimal performance before
implementing a specific estimator.
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Parameter estimation

» We have a vector of random observations y generated from a
probability distribution, which is known up to some unknown
parameter.

» Parameter can be continuous, e.g. # € R, 6 € (0, 1).
Example: the observations are generated from a Poisson
distribution P(#), where the rate parameter 6 > 0 is unknown.

« Parameter can be discrete, e.g. 8 € Z, 0 € {0,1}.

Example: the observations are generated from a Gaussian

distribution N(0, 1), where the expectation parameter 6 € Z is
unknown.
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Parameter estimation

» For simplicity, we will mostly consider a scalar unknown parameter.
« All of the results can be extended to multiple parameters.

* An estimator 9(y) is designed to estimate 0 as closely as possible,
based ony.

* How do we measure closeness?
. . . JANEP
» Define the estimation error, e = 6 — 6.

« Usually we measure closeness using the squared error ¢2.
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Parameter estimation frameworks

Parameter estimation is divided into two main frameworks:

Non-Bayesian estimation:

Deterministic unknown parameter.

Statistical information: the observations’ distribution, which is
indexed by the parameter.

If there exists pdf, then we have f(y; 6).

Given observation vector y, the function f(y; #) is denoted as
the likelihood function.

The likelihood function expresses how likely an observation
vector is for different values of 6.
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Parameter estimation frameworks

Non-Bayesian estimation (cont’d):

A popular estimator is the maximum likelihood (ML)
estimator, AL (y) 2 arg max f(y; 0).

* In many cases, it is convenient to use the log-likelihood
function, log f(y; 6).

» The natural logarithm is a strictly increasing function.

+ We can maximize the log-likelihood function to obtain ML
estimator.
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Parameter estimation frameworks

Non-Bayesian estimation (cont’d):

« Example: y = 6 + w, 6 € R is a deterministic signal that we
want to estimate.
* w~ N(0,1) is random noise — y ~ N (6,1)

likelihood function, y=2
0.4
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« Maximum is obtained for # = 2. More generally, G = .
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Parameter estimation frameworks

Non-Bayesian estimation (cont’d):

* How to evaluate the error of the ML estimator (or other
non-Bayesian estimators)?

» We usually consider the mean-squared-error (MSE),
E[(A — 6)%; 6], w.rt. f(y;6).

* In the expectation, integration is only w.r.t. y.

» The non-Bayesian MSE is a function of 6.
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Parameter estimation frameworks

Bayesian estimation:

Random unknown parameter.

Statistical information: the observations’ distribution given the
parameter and the parameter prior distribution.

If there exists pdfs, then we have f(y|0) and f(6).

We consider the MSE, E[(/ — #)2], w.r.t. to the joint
distribution of y and 6.

Example: y|6 ~ N(6,1), 6 is a random signal that we want to
estimate with prior distribution A/(0, 1).
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Non-Bayesian estimation

+ Main goal: derivation of uniformly best estimator that attains
minimum MSE at any point in the parameter space.

* Find fopt = arg min E[(A — 6)2; 6]=arg min ny(é — 0)%f(y; 0) dy.
0 0

* Problem:
* Non-Bayesian MSE depends on the parameter 6.
» Minimization is performed for a fixed value of 6.
* Unrestricted MSE minimization w.r.t. to the estimator at 6 = 6,
yields the trivial estimator § = 6.

* A lower bound on the MSE is 0.
MSE of trivial eatimator, SD=D \ Not very useful
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Non-Bayesian estimation

Question: How can we avoid trivial optimal estimator and zero
lower bound?
Solution:

We can consider only estimators
that satisfy some restriction...

F
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14/87



Performance bounds for non-Bayesian parameter estimation
0000000000000 000000000000000000000000000000000000000000

Mean-unbiasedness

 Let b(0) 2 E[0 — 6; 0] be the bias of an estimator — Function
of 6.

Let var(9) 2 E[( — E[f; 0])2; 6] be the variance of an estimator
— Function of 6.

MSE(0) = var(6) + b?(6).

+ A very common restriction is mean-unbiasedness, b(f) = 0
— expected value of estimator is equal to the parameter.

The MSE of a mean-unbiased estimator is equal to its
variance.

» A more general restriction is allowing specific bias function,
b(6), which is not necessarily zero. We will discuss it later.
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MSE minimization under mean-unbiasedness

* Non-Bayesian MSE is a function of 6.
« We can try to find  that minimizes the MSE at a fixed 6 = 6.

* In practice, we would like to characterize the optimal
performance of estimators that are mean-unbiased for any
parameter value.

+ Uniform mean-unbiasedness: b(¢) = 0, V6 € Qy.
» We consider a constrained minimization problem at 6 = 6y:

fopt = arg min E[(A — 6)?; 6o], s.t. b(A) = 0,0 € Qy
4

* 2y can be a continuous set — uncountably infinite number of
constraints — very difficult problem to solve.

* We need to relax the uniform mean-unbiasedness constraint.
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Pointwise mean-unbiasedness

» We can consider only estimators that satisfy b(6y) = 0.
+ This is pointwise mean-unbiasedness. Can we avoid the trivial estimator?

« Consider the trivial estimator § = 6, for 65 = 0:
bias of trivial eatimator

-2 -1 0 1 2
(4

« Pointwise mean-unbiasedness is satisfied by the trivial estimator § = 6.
+ We need a more restrictive constraint than pointwise mean-unbiasedness.
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Local mean-unbiasedness

+ Local mean-unbiasedness in the vicinity of a fixed 6 = 6;:
b(6) = 0, b'(6p) = 0.
« Consider the trivial estimator § = 6, for 6, = 0:

—trivial
4 —locally mean-unbiased
s 2
o)
0
-2
-2 -1 0 1 2
0

« The trivial estimator § = 6, does not satisfy this restriction!
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Local mean-unbiasedness

* We can try to solve
fopt = arg min E[(A — 69)%; 60], s.t. b(6) =0, b/(6p) =0
6

* Note: a lower bound for locally mean-unbiased estimators will
also be a lower bound for uniformly mean-unbiased
estimators.

* For local mean-unbiasedness restriction, the solution is
simple and a very useful performance bound...
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Local mean-unbiasedness

* We can try to solve
fopt = arg min E[(A — 69)%; 60], s.t. b(6) =0, b/(6p) =0
6

* Note: a lower bound for locally mean-unbiased estimators will
also be a lower bound for uniformly mean-unbiased
estimators.

* For local mean-unbiasedness restriction, the solution is
simple and a very useful performance bound...

Cramer-Rao Lower
Bound (CRLB)
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CRLB background

« Historically the first and currently the most popular lower
bound on the MSE (variance) of mean-unbiased estimators.

» Characterizes the asymptotic performance of the maximum
likelihood estimator, i.e. for high SNR or a large number of

observations.
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CRLB background

+ Similar to the MSE, the CRLB is a function of 6. It is derived
separately for each value of 6.

var(6) N

» How is it derived? We will consider two approaches:
1. Using Cauchy-Schwartz inequality with a specific choice of

auxiliary function.
2. Directly solving the constrained minimization problem.
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CRLB derivation at 9 = 6,

Theorem: Assume that

« log f(y; 0) is twice differentiable at § = 6.

» The order of integration w.r.t. y and differentiation w.r.t.  can
be interchanged at § = 6.

+ The Fisher information J(6) 2 E[/)?(e); 6] is nonzero at 6 = 6y,
OE £ log f(y; 6) is the score function.

Consider an estimator 4, which is locally mean-unbiased in the

vicinity of 6 = 6. Then,

N 1

E[(0 — 60)*; fo] = CRLB(%0) = 57

with equality iff A
ly(60) = J(60)(0 — bo).
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CRLB Interpretation

Interpretation of CRLB:

Derivative of a function — measure of function sensitivity to
small change in its argument.

Score function — derivative of the log-likelihood function.

In the context of parameter estimation:
high sensitivity of the log-likelihood function to the parameter
— more information that we can use for estimation.

The Fisher information can be viewed as squared norm of the
score function.

The CRLB is the reciprocal of the Fisher information.

High sensitivity — high Fisher information — low CRLB —
We can better estimate the parameter.
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CRLB derivation

Cauchy-Schwartz approach:

* An inner product between two random variables X and Y can
be defined as E[XY].

* We can apply Cauchy-Schwartz inequality
E2[XY] < E[X?]E[Y?] with equallity iff X = cY, ¢ € R.

* In order to obtain an MSE lower boundA, we can apply
Cauchy-Schwartz inequality with X = 6 — 6y and a carefully
chosen auxiliary function Y.

+ We will choose, currently based on intuition, Y = k(6p).
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CRLB derivation

Cauchy-Schwartz approach (cont’'d):
» Applying Cauchy-Schwartz inequality, we obtain

) . E[(A — 60)ky(60); fo]
E[(0 — 60)?; 6] > J(EHZ)O ol

 Let’s consider the numerator:

E[(6 — 60)ly(60); 60] = E[(0 — 0)(6); 0]|o—0,
9

_ [ o_p
_/Qy(e ) gy "0 0) d¥lo=sq

A 0
= [ 00555 0) 8yl
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CRLB derivation

Cauchy-Schwartz approach (cont’d):
» Using the product rule for derivatives:

B0~ 60)y(Co)ito] = | (0= 0)F(¥:0)) aylo-s

-/ | (6?0(9_ e)) 1(y: 0) dylo—s,

» Under the regularity assumptions:
E[(6 — 60)ky(60): o] = b (o) + 1
« For locally mean-unbiased estimators b'(6y) = 0:
E[(0 — 60)ly(60): 6] = 1
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CRLB derivation

Cauchy-Schwartz approach (cont’d):
+ Finally, we obtain

. 1
E[(0 — 05)%: 0] > ——— CRLB is derived!
[( 0)<; 0o] 7(60)

+ What about the equality condition?
6 — 6o = c(60)ky(60)

c(fp) is a constant w.r.t. y
* Let’s find c(6p):

A

0 — 0 =06 — 6+ c(bo)l(bo)
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CRLB derivation

Cauchy-Schwartz approach (cont’d):
» Taking expectation at 6:

E[f — 0;0] = 0 — 0 + c(00)E[(60); 0]
* Applying derivative at 0 = 6y:
d
0=b() =—-1+ ¢(bo) 5 Elly(00): Ollo=s,
= —1+¢(0o)J(b0)

* We get
c(bo) =

J(0o)
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Attaining CRLB

Efficient estimator:

The estimator § = 6 + ;i3 i (6) attains the CRLB V6.
This estimator is a function of # — not practical...

In case 6 # func(f), then it is an efficient estimator with MSE
equal to CRLB.

The efficient estimator coincides with the maximum likelihood
estimator.

Example: Gaussian variance estimation
y ~ N(0p, 6ly), 6 > 0.
Let’s derive the CRLB...
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CRLB for Gaussian variance estimation

+ The likelihood function is f(y; #) = v e 2
2

 Taking the natural logarithm:
log f(y;0) = — % log 6 — %ﬁ + const.

* Derivative w.r.t. QI: ,
W(O) = 2+ 252 — y(0) = % (4 N4 V3 - 0).

» The equality condition of Cauchy-Schwartz is satisfied.

« The Fisher information is J(0) = 2

« We get an efficient estimator g = 1N Zﬁﬂ y?2 that attains
CRLB(9) = 22.
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CRLB for Gaussian variance estimation

Let's make sure that we got the CRLB right.
Taking the square of the score function:

/2(9) 494 (# Zﬁ:1 22121 YaVg — 261N Zg:1 YA+ 92)
6%, n+# k
32 n=k
Taking the expected value of [7(6):
J(9) = 494 (#(SNe2 +N(N — 1)82) — 262 + 92)
J(o) = M (i(2N92 +N2GZ) - 2) = BE 2 — N
CRLB(#) = N , We got it right.

Notice: E[y2] = 0, E[y2y2] = {
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CRLB analysis for Gaussian variance estimation

- We obtained CRLB(0) = 22

+ As N — oo the bound approaches zero.

+ Estimation performance is better as the number of observations increases.
» What can we say about the bound dependence on 0:

CRLB, N=5

40

30

« As 0 increases, the bound increases as well.
 Variance of observations is high — observations are less “reliable”.
 Our estimation performance is worse.
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CRLB alternative derivation

Constrained minimization approach:
+ Going back to the choice of auxiliary function Y = k(o).
* How can we justify this choice?

» We consider a constrained minimization problem at 6 = 6y:
éopt = arg min E[(d — 60)?; 6]
0
s.t. b(@o) = 0, b/(ao) =0

» Formulating a Lagrangian:

/ (6 — 60)21(y; 60) dy — 2)\0/ (6 — 60)£(y: 60) dy
Qy

y

— 2)\ /Q ((6 — 60)ly(Bo) — 1)(y; 6o) dy
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CRLB alternative derivation

Constrained minimization approach (cont’d):

» completing the square of the Lagrangian:

N 2
/ (0 — 0o — (Mo + M Iy(eo))) f(y; 6o) dy + extra terms
Qy

« We obtain the minimizer fopt = 6 + Ao + A1l (6o)-
+ From the constraint b(6p) = 0 we get Ao = 0.

+ From the constraint b/(6p) = 0 we get A = .
» The optimal estimator is 9opt =0 + J /y(eo)

+ This is a justification to the auxiliary function choice Y = i (6o).

» Moreover, this is an alternative (less known) derivation of CRLB.
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Computation of CRLB

+ Sometimes, the parametric model is complicated.

* It is not simple to compute the Fisher information (or
equivalently the CRLB).

+ For the commonly assumed Gaussian observations, a very
useful formula has been derived.

« Assume an observation vector y ~ N (u(6), C(6)).
+ Slepian-Bangs formula:

J(0) = T (O (6) - (0)
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Computation of CRLB

Example: Gaussian model with known variational coefficient.

« Commonly used in statistics, analytical chemistry, economics,
etc.

y ~ N (01, 02IN).
« We compute & pu(0) = 1y, $C(0) = 20ly, C'(0) = Lln.
» We obtain the Fisher information and the CRLB:

2 3N 62
T — = — = ——
1N1 N+ 92 Tr(IN) g2 — CRLB(@) 3N

1

JO) = 7

Estimation performance is better as N increases.

Estimation performance is worse as || increases.
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Fisher information for statistically independent observations

* A more common form of the Fisher information is
J(9) = [892 log F(y; 0); e]

» Assume that we have K statistically independent observation
vectorsy,, k=1,..., K.

» Denote by Jk(0) the Fisher information resulting from
observation vector yy.

+ The overall Fisher information is J(0) = Zf:1 Jk(6).
« Explanation: lety £ yl,....yk".
+ Due to statistical independency f(y; 6) = Hk 1 f(Yk: 0).
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Fisher information for statistically independent observations

* The Fisher information

H
Mx

2
J(#) = —-E [;2 log f(y ;9) 9

>
Il

( pr |0g f(Yk; 0); 9])
1
Jk

(6)

Il
Mx

>
I

1

+ For i.i.d. observation vectors, Jx(0) = J1(0), k=1,..., K.
 The Fisher information J(0) = KJ;(6), i.e. J(0) = O(K).
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CRLB derivation for g(0)

+ We are interested to estimate a differentiable function g(6)
using a mean-unbiased estimator g.

The MSE of g is lower bounded by the following CRLB:

cALe,(0) - 9O

Equality is obtained iff

G- g0) = @g'(%(&)

» For g(#) = 6 we return to the conventional CRLB and efficient
estimator.
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CRLB derivation for g(0)

« Example: y = e’ + w, 6 € R.

+ g(9) = €’ is a deterministic signal that we want to estimate.
» We are not interested in the actual value of 6.

w ~ N(0,0?) is random noise, o2 is known.

The Fisher information is J(0) = &, g/(6) = €’.

In this case g = y is an efficient estimator that attains
CRLBg(0) = 2.

» There is no efficient estimator of 6.
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Biased CRLB

We allow the estimator to have specific bias function b(6) with
derivative b/'().

+ The variance of such estimator is lower bounded

(1+b'(0))?

var(6) > )

» The bound is attained iff k() = +2i5;(0 — 0 — b(0)).

MSE is a direct measure of estimation error.

+ Usually, we are more interested in MSE(#) = var(6) + b?(6).
» We obtain

MSE(0) > W + b2(0)
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Biased CRLB

* What can we gain by allowing biased estimators?

* In many estimation problems, there is a bias-variance
tradeoft.

* low variance — high bias, low bias — high variance.

+ A biased estimator may have a uniformly lower MSE than
CRLB.

Example: Gaussian variance estimation

202
y ~ N(Op,6l), CRLB(0) = —
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Biased CRLB

+ In this example, we can find a biased-efficient estimator

Op-oft = 3z Don_1 Y2 With bias function b(8) = —250.
CRLB and biased CRLB, N=5

40
—CRLB
—Biased CRLB

30

20

10

c0 2 4 6 8 10

6

» The MSE of this estimator is 2% < CRLB(6), V6 > 0.
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An alternative to CRLB

* In some cases, the regularity assumptions of the CRLB are
not satisfied.

» For example, the likelihood function may not be differentiable.

+ Hammersley, Chapman, and Robbins (1950) proposed a less
restrictive bound, HCRLB, for mean-unbiased estimators:

2
HCRLB(6) = sup "
h fyo+h)  1\2.
E[( e 1) ,0]

0 + his called a test-point.
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An alternative to CRLB

+ In a similar manner to CRLB, this bound is obtained by using
Cauchy-Schwartz inequality.

* It uses an approximation of the score function W

« Differentiability of the likelihood function is not required.
- f(y;0+h)—f(y;0

. ILTOW = k(6).

+ Consequently, for h — 0 HCRLB(#) — CRLB(9).

HCRLB is tighter than or equal to CRLB.
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HCRLB example

« Example: y = 6 + w, 6 € Z is a deterministic integer signal
that we want to estimate, w ~ A (0, 02) is random noise.

» Parameter is discrete, likelihood function is not differentiable.
CRLB cannot be used. HCRLB can be used instead:

_
el/o? — 1

HCRLB =

The HCRLB is lower than the CRLB (for continuous
parameter).

The discrete nature of the parameter is side information —
MSE is reduced.
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MSE minimization under uniform mean-unbiasedness

 Let’s return to the uniform mean-unbiasedness restriction.
. We were interestgd to solve:
fopt = arg min E[(6 — 600)?; 6], s.t. b(#) =0,V € Qq
6
» Barankin (1946) solved this problem.

» The solution is based on sampling the parameter space at M
test-points 64, ..., 0y.

» Mean-unbiasedness is required only at these test-points — we get
M constraints

» M can be arbitrarily large, so eventually we cover the entire
parameter space.

» Barankin discovered that the optimal solution is based on linear
combinations of the likelihood ratio function 7¥7) sampled at the
test-points.
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Barankin lower bound

The solution is named the Barankin lower bound (BLB):

MSE(Q) > (Zm 1 am( ))2

sup

2
..... 01,...,0 f(y;0m .
at.am: 01, 0M g [(Zm . am )S{y;e))> ’9]

The bound is valid for any choice of M, real coefficients
ai,...,ay, and test-points 01, ...,0y.

This is the tightest lower bound on the MSE of uniformly
mean-unbiased estimators.

Problem: usually, we are not able to determine the optimal
choice of coefficients and test-points — BLB cannot be
computed.

What can we learn from the BLB?
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Barankin lower bound

For obtaining intuition about the BLB, it is useful to consider
the specialcase M=2,a1=—-1,aa =101 =0,0o=60+ h.
* We obtain

2

MSE(#) > sup h 5

h f(y:0+h) :
E [( Ko —1) '9]

HCRLB is a special case of BLB.

Consequently, CRLB is also a special case of BLB.

To obtain a tight bound, we choose h that maximizes the
HCRLB.

= HCRLB(9)
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Barankin lower bound

» High value of hincreases the numerator but usually the
denominator is increased as well.

* For h — 0 the bound tends to the CRLB.
* In high SNR, usually the choice h — 0 is optimal.

» Equivalently, in high SNR, the CRLB is the tightest bound on
the MSE of uniformly mean-unbiased estimators.
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Barankin lower bound

* In low SNR, we can sometimes find h 4 0 for which
f(y; 0 + h) and f(y; #) are very similar (their ratio is close to 1).

« |t is difficult to distinguish between 6 and 6 + h.
+ Estimation performance is worse.
+ This phenomenon is ignored by CRLB.

+ In this case, the HCRLB is tighter than CRLB and better
characterizes the optimal performance of uniformly
mean-unbiased estimators.
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CRLB for other risks

* In some problems, MSE is inappropriate.
» For example, when the likelihood function is periodic.
» The parameter can be an angle or phase of a signal.

* We need to consider the periodicity and use 2r-periodic cost
function.

« The cyclic-error, 2 — 2 cos(d — 0), measures the square
euclidean distance on a circle.

« The mean-cyclic-error (MCE), E[2 — 2 cos(f — 6); 6], is an
appropriate risk.

* Is mean-unbiasedness appropriate in this periodic case?
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CRLB for other risks

* It was shown by Todros, Winik, and Tabrikian (2015) that the
Barankin bound is infinite for periodic likelihood function.

* There are no mean-unbiased estimators.

* We need alternative unbiasedness conditions and
corresponding CRLB on the MCE.

» Lehmann (1951) proposed a generalization of
mean-unbiasedness to arbitrary cost functions.

« An estimator § is said to be a uniformly Lehmann-unbiased
estimator of # w.r.t. the cost function L(-, ) if

E[L(0,n); 6] > E[L(A,0); 6], V0,7
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CRLB for other risks

« Under the squared-error cost function, L(d,0) = (0 — 6)2, the
Lehmann-unbiasedness is reduced to the conventional
mean-unbiasedness:

E[0 —0] =0, V0

« Under the cyclic-error cost function, L(f,0) = 2 — 2 cos(d — ),
the Lehmann-unbiasedness conditions are:

E[sin(d — 0)] = 0, E[cos(d — )] > 0, V6

» These conditions were developed by Routtenberg and
Tabrikian (2014) and are named cyclic-unbiasedness
conditions.
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CRLB on MCE

Routtenberg and Tabrikian (2014) derived the cyclic CRLB on
the MCE of cyclic-unbiased estimators.

The MCE of a cyclic-unbiased estimator § is lower bounded
by

MCE(6) > CCRLB(0) 2o 2(1 + CRLB(@))*%
Phase estimation: y, = Aé? + w,, n=1,...,N
* 0 € [— m, ), unknown deterministic phase.

Wy ~ CN(0,02) is circular complex Gaussian random noise,
o? is known.
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CRLB on MCE

» Maximum likelihood estimator is cyclic-unbiased and is not
mean-unbiased in this example.
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CRLB for vector parameter

» Multivariate CRLB:
MSE(@) = CRLB(9) 2 J=1(8)

- J(O) 2E [% log f(y; 6) %5 log £(y; 8); 8] is the Fisher
information matrix (FIM).

» The inequality is in the sense of positive semidefinite
matrices.
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CRLB for vector parameter

Subvector estimation:
« We have an unknown parameter vector 8 = [#],6]]7.
» We are interested in 6.

Ji1(0) J12(0)
« The FIM can be expressed as J(0) = ' '
P ©) [sz(e) J22(6)
A T
* Imi(8) S E |53 log £(y: 6) 53 log f(y: 9);9], mk=1,2
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CRLB for vector parameter

Subvector estimation (cont'd):
* In case 0, is known:

CRLB; = J7]
* In case 65 is unknown:

CRLB; = J1_71 + JZ}J172(J272 — J271J1_71J172)71J271J1_71

positive semidefinite matrix

* We have an additional term.

« The CRLB is usually higher when we have additional
unknown parameters.
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CRLB for vector parameter

* If J12 = Jo 1 = 0 the parameter vectors 64 and 0, are
decoupled in terms of CRLB.
* In this case, the CRLB for estimation of 8, is unchanged, no
matter if 8- is known or not.
« Example: yp = p+wp, n=1,...,N, u € Ris unknown mean,
wh ~ N(0, o?) is random noise, the variance o2 is unknown.
A N o0 @2
c0=[u0o%",d@0)=| 5| CRLB@O)=|N _,
0 20 0

+ In the Gaussian case, there is no coupling between mean
and variance in terms of the CRLB.
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Singular FIM

CRLB is the inverse of the FIM. But, what if the FIM is
singular?

In this case, we cannot compute a bound for 6.

+ But, we can obtain a meaningful bound for the projection of 6
on a subspace V, i.e. V'é.

Eigenvalue decomposition (EVD): J(0) = UAU'.
* U= [uy,...,uy], matrix of eigenvectors.
« A =diag(\1,. .., A\y), diagonal matrix of eigenvalues.

61/87



Performance bounds for non-Bayesian parameter estimation
0000000000000 0O000O000O00O0000000O000000000000000000000e0000

Singular FIM

* Assumethat \p; >0, m=1,... M- K,
An=0, m=M-K+1,....M.

A . . .
* V= [uy,...,upy_g]| contains eigenvectors with nonzero
eigenvalues.

« CRLB for estimation of V76:
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Singular FIM

» We only estimate the components of 8 in the subspace of
eigenvectors with nonzero eigenvalues.

* Nonzero eigenvalues imply that the observations provide
information for estimating the components of € in the
corresponding directions (eigenvectors).

« Example: y =601 + 602 + w, w ~ N(0,1), 8 = [04,062]"

e J= 1 1 , Singular matrix.
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Singular FIM

ot N2 ol (1
EVD:J = \/2[1 ~1| /o of | V2|1 -1

V= 5[1,1]", V70 = J5(61 +02), CRLBy = 3.

» The observation only provides information on the sum of the
elements of 6.

+ We cannot estimate each element of 0, but we can estimate
the sum of its elements.
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CRLB under parametric constraints

+ Consider estimation of parameter vector 6 € RM.

* Itis known that f(8) = 0k, K < M.

+ Define F(6) = —4,f(6).

+ Can we better estimate & when we have this side information
about the constraints?

» Gorman and Hero (1990) developed a constrained version of
the CRLB:

MSE(8) = COCRLB(6) 2 J=' — J='FT(FJ~'FT)"'FJ~"

positive semidefinite matrix

» The COCRLB is lower than the unconstrained CRLB.
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CRLB under parametric constraints

« Example: y = 6 +w, w ~ N (0y, ?ly).
« § =y s an efficient estimator attaining CRLB(8) = ¢2ly.
* Itis known that 0 satisfies f(6) = A@ = 0k, K < M.

+ Let Np = Iy — AT(AAT)~'A denote the orthogonal projection
matrix onto the null space of A.

« & = Nay is a constrained efficient estimator attaining

COCRLB(6) = 0®Np = o2ly = CRLB(0)

Projection of the efficient estimator on the null space of A —
constrained efficient estimator with lower MSE matrix.
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Outline

e Performance bounds for Bayesian parameter estimation
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Bayesian MSE estimation

» We are given observation vector y from conditional
distribution with pdf f(y|6).

+ We are interested to estimate the unknown parameter 6.
* 0 is a random variable with known prior pdf f(6).

- We are usually interested in MSE 2 E[(d — §)2].
 The expectation is w.r.t. the joint pdf f(y, 6).
« MMSE estimator: fyuse = E[d]y], MMSE: E [(E[9|y] - 9)2}

* Another popular estimator is the maximum a-posteriori (MAP)
estimator, Oyap = arg max f(oly).

* When f(0]y) is symmetric and unimodal, MAP and MMSE
estimators coincide.
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Common behavior of MAP/MMSE estimators

* In nonlinear estimation problems, the MSE (or root MSE) of the
MMSE/MAP estimator is usually described:
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« Given prior distribution on 6, MMSE is the optimal performance that one
can attain.
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Bayesian MSE lower bounds

» Problem: in many cases, the computation of MMSE is
intractable.

» We would like to characterize the optimal performance as
closely as possible.

+ Bayesian lower bounds on the MSE of any estimator can be
used as benchmarks.

» Two main classes:

» Weiss-Weinstein class - based on Cauchy-Schwartz
inequality: including Bayesian Cramér-Rao bound (BCRB)
and Weiss-Weinstein bound (WWB).

 Ziv-Zakai class - based on the relation between MSE and
probability of error: including Ziv-Zakai bound (ZZB).
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» Van Trees (1968) developed a Bayesian analogue to the CRLB.

- J2 E[?(y, 0)] is the Bayesian Fisher information,
A
Iy, 0) = 35 log f(y, 0).

» BCRB is the simplest and most popular Bayesian lower bound but it
has some drawbacks:

* It may not be attained by the MAP or MMSE estimators, even
asymptotically.

» Requires restrictive regularity assumptions, e.g. differentiability of
f(6).

* Fails to predict the threshold region of MMSE/MAP estimator.
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Overcoming BCRB drawbacks

» The asymptotic performance of the MAP estimator is
characterized by the expected value of the CRLB

ECRB 2 E[CRLB(0)]

» The ECRB is not a lower bound so it can be higher than the
MSE of the MAP/MMSE estimator.

+ ECRB can only be used as an asymptotic benchmark.
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Overcoming BCRB drawbacks

* |t is necessary to find a lower bound with mild regularity
assumptions that is able to predict the threshold region of the
MMSE/MAP estimator.

+ Two lower bounds satisfy these requirements:

+ WWAB: derived by Weiss and Weinstein (1985)
« ZZB: derived by Ziv and Zakai (1969)

» For example, unlike the BCRB, these bounds can be used for
estimation of a discrete random parameter.

« It is not clear which of these bounds is tighter in general.
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+ The WWB is obtained by applying Cauchy-Schwartz
inequality E2[XY] < E[X?]E[Y?] with X = § — § and
Y= LS(y’ 0+ ha 6) - L1—S(y’ 0 — h7 9)
A
» L(y.01,02) = {55
» The choice of Y is based on Chernoff distance between pdfs:

cd(s) 2 ny fg “S(y)fS(y)dy = Ey, [(gg;)s} :
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+ The WWB is given by

HPE2[LS(y, 0 + h, 0)]
[(Ls(yv 0+ h> 9) - L1_S(y7 0— h7 0))2]
* The bound should be maximized w.r.t. s € (0,1) and h € R.
In many cases, the choice s = % is optimal.

» For h — 0, WWB coincides with BCRB — WWSB is tighter
than BCRB.

~ A
E[(A — 6)?] > WWB = =
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+ consider the Bayesian detection problem:

Ho Y ~ f(y|6), Pr(Ho) = f(9)+f(f9()e+h)

Hy:y ~ f(y|0 + h), Pr(Hy) =1 — Pr(Hp)

Let Pmin(6, 6 + h) denote the minimum probability of error obtained
from the optimum likelihood ratio test.

The ZZB is given by:

E[(d — 60)?] > ZZB
al [

2/ (/ (f(9)+f(9+h))Pmin(9,9+h)d9>hdh

—00

« The minimum probability of error can be difficult to compute.
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Example - Bayesian frequency estimation

s yp=Ae" +w, n=1,....N

* 0 € [ — m, ), unknown frequency with generalized symmetric
beta prior pdf.

The amplitude A and the phase ¢ are known.

wp ~ CN (0, 02) is circular complex Gaussian random noise,
o2 is known.

We define SNR £ 4.
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Example - Bayesian frequency estimation

> —e—ML

10%log,(RMSE)

-20}+

SNR (dB)
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BCRB for stochastic filtering

Stochastic filtering: Bayesian estimation problem.

* We want to estimate a current system state (random variable)
based on current and previous random observations.

In general, the MMSE estimator and its performance are
difficult to compute both analytically and numerically.

BCRB is a commonly used tool for performance analysis of
stochastic filters.
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state space model

{9,7 = an(0n—1, Wn) vneN

Yn = hn(6n, vn)
* 0, € R - random state
* 6p € R - initial random state

« 0" 210y, ...,00" - vector of augmented states
Number of unknown parameters increases with time

« y» € R¥ - observation vector

- y™ 2 yT ... yI]" - vector of augmented observations

« W, € Rand v, € RY - system and observation noise, respectively
+ a,: R?® — R - state transition function

« h,: R x RN — R¥ - observation function

80/87



Performance bounds for Bayesian p
000000000000 00e00

BCRB for stochastic filtering

* Mulivariate BCRB: BCRB = 21,
s J= E[aae log f(y, ) Iog f(y, 0)] is the Bayesian FIM (BFIM).
+ At time step n, there are n+ 1 unknown parameters,
bo, - .., 0n.
* We are only interested in estimation of the current state 6.
« £, 2 f(y™,6(M) denotes the joint pdf at time step n.
- J, 2E [38';(gn)f" 8a;°g f"] e R(M1x("+1) " denotes the nth step
BFIM.
» The corresponding BCRB is [Jf]

n+1,n+1.
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Computation of BCRB for stochastic filtering

» Problem: at each time step n, the BCRB requires the inversion of
the BFIM J,,.

 This task can be very difficult for large n since the size of J, grows
linearly with n.

» Tichavsky, Muravchik, and Nehorai (1998) proposed a recursive
computation of the BCRB at each time step n that does not require
inversion of J,.

* Due to the Markovian nature of the problem:

fo1 = \fn// f(On+110n)f(Yni110ns1), YN >0,

Previous step  Dynamics New observation

» nth step BCRB is computed recursively based on this relation.
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Recursive computation of BCRB

1
[Jr71]n+1,n+1 ’

» The sequence {£,} obeys the following recursion

+ Define the nth step Fisher information &, =

D35
fnp1 = Dpop — —=2— ¥n=0,1,2,...

fn + Dn,1,1
d? log (6 A 82 log (0 [

fo=-E |:d9§( 0)} sy Dn11=-E {78(95"“‘ n)

A 8 log f(0n1110n)
Dn12=—E [ 90,0001

A 82 log F(0ny1]6 9% log f(Xn41|0n41
Dn7272 =-E [ g80(2n+1\ n)] —E [3(92+ : )

n+1 n+1

» At each time step n, we can compute £, based on &, 4 and
substitute it in the nth step BCRB.
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Conclusion

» Performance bounds for parameter estimation are useful
tools for performance analysis.

» These bounds improve our understanding of the problem at
hand, before resorting to specific estimation techniques.

» Performance bounds have been around for decades and are
still an active area of research.
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Examples:

» Misspecified performance bounds: maybe our parametric
model is not accurate. How well can we estimate?
Example: estimation of Gaussian mean with “known”
variance. We assume y ~ N(0,0%) but in fact y ~ N'(6, 03).

» Semiparametric performance bounds: combination of
parametric and nonparametric approaches. How well can we
estimate the parameters under nonparametric uncertainty?
Example: estimation of the mean value of a pdf in the set of
elliptically symmetric pdfs.

86/87






	Introduction
	Performance bounds for non-Bayesian parameter estimation
	Performance bounds for Bayesian parameter estimation
	Conclusion

