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Kaie Kubjas, 30.09.2020



• Homework deadline is on Friday at 23:59


• Exercise session this week: discussion of Homework 2 in breakout rooms


• Need to receive at the end of the course 60% of the homework points


• Optional extra homework: can be submitted any time during the course 
(50% of a regular homework)


• If you missed a reading task: contact me



Agenda

• Discrete conditional independence models


• Gaussian conditional independence models


• Primary decompositions of conditional independence ideals


• Statistics primer



Conditional independence



Conditional independence

Def: Let  be pairwise disjoint subsets. We say that  is 
conditionally independent of  given  if and only if


 


for all .


• Notation  or .

A, B, C ⊆ [m] XA
XB XC

fA∪B|C(xA, xB |xC) = fA|C(xA |xC)fB|C(xB |xC)

xA, xB, xC

XA ⊥⊥ XB |XC A ⊥⊥ B |C



Discrete conditional 
independence models



Discrete random variables

• A vector of discrete random variables 


•  takes values in 


•  takes values in the Cartesian product 


• For , let  and 

X = (X1, …, Xm)

Xj [rj]

X ℛ =
m

∏
j=1

[rj]

A ⊆ [m] XA = (Xa)a∈A ℛA = ∏
a∈A

[ra]



Marginal distribution

Let  be pairwise disjoint subsets. The notation  
denotes the marginal probability  which can be 
written as


.


A, B, C ⊆ [m] piA,iB,iC,+
P(XA = iA, XB = iB, XC = iC)

piA,iB,iC,+ = ∑
j[m]\A∪B∪C∈ℛ[m]\A∪B∪C

piA,iB,iC,j[m]\A∪B∪C



Discrete conditional independence
Prop: If  is a discrete random vector, then the conditional independence 
statement  holds if and only if


 


for all  and .


Example: Let . Then  holds if and only if


 .

X
XA ⊥⊥ XB |XC

piA,iB,iC,+ ⋅ pjA,jB,iC,+ − piA,jB,iC,+ ⋅ pjA,iB,iC,+ = 0

iA, jA ∈ ℛA, iB, jB ∈ ℛB iC ∈ ℛC

m = 2 X1 ⊥⊥ X2

pi1,j1pi2,j2 − pi1,j2pi2,j1 = 0 for all i1, i2 ∈ [r1], j1, j2 ∈ [r2]



XA ⊥⊥ XB |XC ⇔ piA,iB,iC,+ ⋅ pjA,jB,iC,+ − piA,jB,iC,+ ⋅ pjA,iB,iC,+ = 0



Discrete conditional independence ideal

Def: The conditional independence ideal  is generated by the 
polynomials  for all 

 and .


Example: Let  and consider the ordinary independence statement 
. Then


 . [poll]

IA⊥⊥B|C
piA,iB,iC,+ ⋅ pjA,jB,iC,+ − piA,jB,iC,+ ⋅ pjA,iB,iC,+

iA, jA ∈ ℛA, iB, jB ∈ ℛB iC ∈ ℛC

m = 2
X1 ⊥⊥ X2

I1⊥⊥2 = ⟨pi1,j1pi2,j2 − pi1,j2pi2,j1 : i1, i2 ∈ [r1], j1, j2 ∈ [r2]⟩



Conditional independence ideal

Def: If  is a set of conditional 
independence statements, then the conditional independence ideal is 
defined as


.

𝒞 = {XA1
⊥⊥ XB1

|XC1
, XA2

⊥⊥ XB2
|XC2

, …}

I𝒞 = ∑
A⊥⊥B|C∈𝒞

IA⊥⊥B|C



Discrete conditional independence model

Def: The probability simplex in  is


.


Def: The discrete conditional independence model 
 consists of all probability distributions that 

satisfy all the conditional independence statements in . [poll]

ℝℛ

Δℛ = {p ∈ ℝℛ : ∑
i∈ℛ

pi = 1,pi ≥ 0 for all i}
ℳ𝒞 := V(I𝒞) ∩ Δℛ ⊆ Δℛ

𝒞



Gaussian conditional 
independence models



Multivariate normal distribution

Let  be the set of  symmetric positive definite matrices.


Def: Suppose  and . Then a random vector 
 is distributed according to the multivariate normal 

distribution  if it has the density function


.

PDm m × m

μ ∈ ℝm Σ ∈ PDm
X = (X1, …, Xm)

𝒩m(μ, Σ)

ϕμ,Σ(y) =
1

(2π)m/2 |Σ |1/2 exp {−
1
2

(y − μ)TΣ−1(y − μ)}



Gaussian conditional independence models

Prop: The conditional independence statement  holds for a 
multivariate normal random vector  if and only if the submatrix 

 of the covariance matrix  has rank . [poll]


• The set of symmetric matrices of rank at most  is an algebraic variety 
defined by  subdeterminants. 


• The  subdeterminants are called the -minors.

XA ⊥⊥ XB |XC
X ∼ 𝒩(μ, Σ)

ΣA∪C,B∪C Σ #C

k
(k + 1) × (k + 1)

(k + 1) × (k + 1) (k + 1)



Gaussian conditional independence ideal

Def: The Gaussian conditional independence ideal  is the following 
ideal in :


.


Def: If  is a collection of conditional independence statements, then the 
conditional independence ideal is defined as 


 

JA⊥⊥B|C
ℝ[σij,1 ≤ i ≤ j ≤ m]

JA⊥⊥B|C = ⟨(#C + 1) minors of ΣA∪C,B∪C⟩

𝒞

J𝒞 = ∑
A⊥⊥B|C∈𝒞

JA⊥⊥B|C



Gaussian conditional independence model

Def: The Gaussian conditional independence model is a subset of , the 
set of  symmetric positive definite matrices:


.

PDm
m × m

ℳ𝒞 := V(J𝒞) ∩ PDm



Gaussian conditional independence

• Let  and . 


• Then


.


• The Gaussian conditional independence model consists of all covariance 
matrices  satisfying  and .


• Alternatively we can consider  and .

m = 3 𝒞 = {1 ⊥⊥ 3,1 ⊥⊥ 3 |2}

J𝒞 = ⟨σ13, det Σ{1,2},{2,3}⟩

Σ ∈ PD3 σ13 = 0 σ12σ23 − σ13σ22 = 0

σ13 = 0 σ12σ23 = 0



Gaussian conditional independence

• Alternatively we can consider  and .


• The solutions to these equations are given by the union of two linear 
spaces:


.


• These components correspond to  and .


• Hence .

σ13 = 0 σ12σ23 = 0

L1 = {Σ : σ13 = σ12 = 0}, L2 = {Σ : σ13 = σ23 = 0}

X1 ⊥⊥ (X2, X3) X3 ⊥⊥ (X1, X2)

X1 ⊥⊥ X3 and X1 ⊥⊥ X3 |X2 ⟹ X1 ⊥⊥ (X2, X3) or X3 ⊥⊥ (X1, X2)



Primary decomposition



Primary decomposition

• An ideal  is called primary if  implies that either  or 
 for some .


• A primary decomposition of an ideal  is a representation 
 where each  is a primary ideal. 


• Every ideal has a primary decomposition. A minimal primary 
decomposition can be computed in Macaulay2.

Q f ⋅ g ∈ Q f ∈ Q
gk ∈ Q k ∈ ℕ

I
I = Q1 ∩ ⋯ ∩ Qr Qi



Irreducible decompositions

• A variety  is called reducible if there exist varieties  such that 
. A variety that is not reducible, is called irreducible.


• A primary decomposition of an ideal , gives a decomposition of :


.

V V1, V2 ⊊ V
V = V1 ∪ V2

I V(I)

V(I) = V(Q1) ∪ ⋯ ∪ V(Qr)



Primary decomposition of CI 
ideals



Intersection axiom

Prop (Intersection axiom): Suppose that  for all . Then


.


• The condition  for all  is stronger than necessary. 

f(x) > 0 x

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D ⟹ XA ⊥⊥ XB∪C |XD

f(x) > 0 x



Failure of the intersection axiom
• Let  be binary random variables.


• Let .


• Intersection axiom:


 [poll]


• 


• Hence  is 

X1, X2, X3

𝒞 = {1 ⊥⊥ 2 |3,1 ⊥⊥ 3 |2}

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D ⟹ XA ⊥⊥ XB∪C |XD

A = {1}, B = {2}, C = {3}, D = ∅

XA ⊥⊥ XB∪C |XD X1 ⊥⊥ (X2, X3)



Failure of the intersection axiom
• The CI ideal is generated by four -minors of the matrix


.


• The CI ideal has the primary decomposition


.


• The first component corresponds to the conclusion of the intersection axiom.


• The other components correspond to families of probability distributions that might 
not satisfy the conclusion of the intersection axiom.

2 × 2

(p111 p112 p121 p122
p211 p212 p221 p222)

𝒞I = I1⊥⊥{2,3} ∩ ⟨p111, p211, p122, p222⟩ ∩ ⟨p112, p212, p121, p221⟩



Failure of the intersection axiom

• For discrete random variables, precise conditions can be given which 
guarantee that the intersection axiom holds.


• The condition is given in terms of a certain graph having one connected 
component. 


• See Chapter 4.3.1 in “Algebraic Statistics”



Conclusion
• CI ideal associated to a set of conditional independence statements


• Discrete case: The variety of the CI ideal intersected with the probability 
simplex consists of these joint probabilities that satisfy the CI statements


• Gaussian case: The variety of the CI ideal intersected with the positive 
definite cone gives these densities that satisfy the CI statements


• Primary decompositions of ideals are used to study CI implications


• We will return to conditional independence statements in the graphical 
models section



Statistics primer



1. What is the difference between probability and 
statistics?

• In probability, we assume the probability distributions are known. In 
statistics, we start from data, and infer certain properties of the underlying 
distribution (possibly with hypothesis testing).


• In the case of probability, we already know the distribution with which we 
are working and want to know more about its characteristics and how we 
can change some of the features. In statistics, we are presented with 
some sampled data and have to make an educated guess to which 
distribution the sample set could belong. 


• Probability and statistics are two sides of the same coin.



Statistical models

• A statistical model is a collection of density functions or probability 
distributions.


• A parametric statistical model is the image of a mapping from a finite 
dimensional parameter space  to a space of density functions or 
probability distributions, i.e. .


• An implicit statistical model is defined via constraints on densities or 
probability distributions. [poll]

Θ ⊆ ℝd

p⋆ : Θ → ℳΘ, θ ↦ pθ



2. Can a model be parametric and implicit?

• Yes, for example the model of independence (Example 5.1.4). 


• Let  and  be two discrete random variables with state spaces  and . 
Let .


• Implicit description: The model of independence consist of all distributions 
 such that .


• Parametric description: Let  and . Then 
.


• How would you get the implicit description from the parametric description?

X1 X2 [r1] [r2]
ℛ = [r1] × [r2]

p ∈ Δℛ P(X1 = i1, X2 = i2) = P(X1 = i1)P(X2 = i2)

Θ = Δr1−1 × Δr2−1 θ = (α, β) ∈ Θ
Pθ(X1 = i1, X2 = i2) = αi1βi2



3. The book uses  and . What is 
the difference between the two notations?

X1, …, Xm X(1), …, X(n)

•  denote random variables with underlying distributions, whose 
values are generally assumed as unknown.  are data points, 
or specific instances / realizations of the random variables.

X1, …, Xm
X(1), …, X(n)



Data

• Independent and identically distributed data 
means that  are realizations of random variables that have the same 
distribution and that are mutually independent


• Independent and identically distributed = i.i.d.


• Discrete case: The probability of observing the data  is 

.

D = {X(1), X(2), …, X(n)}
X(i)

D

pθ(D) =
n

∏
i=1

pθ(X(i))



Data

• Discrete case: If the random variable has the state space , then we can 
define the vector of counts  by


.


• The probability of observing data  becomes


.

[r]
u ∈ ℕr

uj = #{i : X(i) = j}

D

pθ(D) =
r

∏
i=1

pθ( j)uj



Next time

• Exponential families or likelihood inference


• Group work topics: the method of moments, the cone of sufficient 
statistics, exponential random graph models, phylogenetic models


