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Tr (n) = Complete r
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So morally , all,graphs with
large

higher edge density than It
contains all small r -colorable

graphs as subgraphs .
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Erdos - Stone is proven via

Szenerebi 's irregularity lemma
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Proof of corollary :
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What is the growth rate of
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How many edges can a graph have

that has no Kr minor ?

It is enough to have large enough
average degree to force Kr

minors
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I. other words
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For monday :
Read Szenereli 's regularity
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• statement
• Proof of Erdos - Stone theorem

via SRI
• Proof of SRT
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