Extremal graph theory: w nodes How many edges can a grythave without containing H as a sub yogh ex (n, H)

Ex: $\quad e x(4, \Delta)=4$

Note: if $m>$ ex $\left(n, K_{r}\right)$,
then every graph w. n nodes n edges have every r rode graph H as a subjraph.

What graphs have no K_{r} ?
Amoy others, (r-1)-partite graphs.

in $K_{s_{1} s_{2} \ldots s_{r-1}}$

$$
=\sum_{i \neq j} s_{i} s_{j}
$$

$T_{r}(n)=$ Complete repartile graph on a nodes divided in parts of size $\lceil\hat{r}\rceil$ or $\lfloor\hat{\hat{r}}\rfloor$

$$
t_{r}\left(l_{n}\right)=\# \text { edges in } T_{r}\left(C_{n}\right)
$$

Ex $T_{3}(8)$

$$
t_{3}(8)=3 \cdot 3 \cdot 3 \cdot 2+3 \cdot 2=21
$$

Turai's theorem: $\operatorname{ex}\left(n, K_{r}\right)=t_{r_{r-1}(n)}$
Pf:- $-e_{x}\left(\Lambda_{1} K_{-}\right) \geqslant t_{r-1}\left(n_{n}\right)$ because $T_{r-1}(n)$ has 10 K_{r}

- Nt if GTyhas no K_{r} then G ha, at most t_{r-1} edges.
6 has a $Q \cong K_{r-1}$ copy Consider G.Q. $=H$

$$
|E(G)| \leqslant \begin{gathered}
\binom{-1}{2}+e_{Q^{-}}^{1}+\frac{e x\left(n-r+1, K_{r}\right)}{H-M}+(r-Z)(n-r+1) \\
Q^{-H}-H
\end{gathered}
$$

$$
\stackrel{\text { 1.H. }}{\leqslant}\binom{r-1}{2}+(r-2)(n-r+1)+t_{r-1}(n-r+1)
$$

$1 /$

$$
t_{r-1}(n)
$$

Note: $\chi(H) \leqslant r \Longleftrightarrow H \subseteq T_{r}\left(r_{n}\right)$ if $|H|=n$

Erdós - Stone thm: For all ε, m exists $N_{s l}$ Every groph with $n \geqslant N$ nodes and $\geqslant t_{r-n}(n)+\varepsilon_{n}{ }^{2}$ edjes contains $T_{r}(m)$ as a subgraph
Edje density $=\frac{\text { \#edjes }}{(\hat{2})} \approx 2 \frac{\text { \#edpes }}{n^{2}}$ Edje density of Turas $T_{r} \int_{(r)}^{c h} \approx \frac{r-1}{r}$

So morally, $\frac{\text { all }}{\text { large }}$ graphs with higher edge density than $\frac{r-1}{r}$ contains all small recolourable sight as subgraphs.

Erdós - Shone is proven via Szeneredi's regularity lemma.
(on monday)
Cor: For every graph H,

$$
\lim _{n \rightarrow \infty} \frac{e \times\left(n_{1} H\right)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

So ex $(n, H) \sim n^{2}$ for graphs with $\begin{aligned} & \chi(H) \geqslant 3\end{aligned}$

$$
\text { ex }(n, H)=0\left(n_{n}^{2}\right) \text { for bipartite graph }
$$

Prot of corollary:
$\chi(H)=k$. Then $H \notin T_{\text {run }}(n)$ for all 1 but $H \subseteq T_{r}(m)$ for $m=r(H)$

So for all 1 we have $t_{r-1}(n) \leqslant e x(n, H) \leqslant e x\left(n, T_{r}(m)\right)$.
By Erdös-Stone, $\operatorname{li}_{0}^{\forall \varepsilon \exists N_{0}} \operatorname{ex}\left(n, T_{r}(n)\right)<t_{r-1}()_{1}+\varepsilon_{n}^{2}$ for all $n \geqslant N_{0}$.
So for any $\varepsilon>0$ we $\mathrm{g}^{\text {th }}$

$$
\begin{aligned}
& \frac{t_{r-1}(\Lambda)}{(i)} \leqslant \frac{e x(n, H)}{(\hat{i})} \leqslant \frac{t_{r-1}(\Lambda)}{(\hat{i})}+\frac{\varepsilon_{n}^{2}}{(i)} \\
& \rightarrow \rightarrow \infty \\
& \frac{r-2}{r-1} \\
& \underset{\frac{r-2}{r-1}+2 \varepsilon}{\substack{n \rightarrow \infty\\
}}
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we jet

$$
\frac{e \times(n, r)}{(\hat{\imath})} \underset{n \rightarrow \infty}{\longrightarrow} \frac{r-2}{r-1}
$$

What is the growth rate of ex (n, H) for bipartite graph?

The: $c_{1} \eta^{2-\frac{2}{r-1}} \leq e x\left(n, K_{r, r}\right) \leqslant c_{2} n^{2-\frac{1}{r}}$ for some universal constants c_{1}, c_{2}.

Conj: For any tree, ${ }^{\text {Cod os's }}$ with k edges
(Edo's - Sos)

$$
e \times(n, T)=\frac{1}{2}(k-1) n
$$

How mary edges can a caph heme that has no K_{r} minor?

It is enough to have la ge enough average degree to force minors

Thu: if $G^{=}=(V \cdot E)$ has average degree $\geqslant 2^{r-2}$, then G has a K_{r} minor

$$
\frac{|E|}{n} \geq 2^{r-3}
$$

Pf: Assume that G minor-minimal with weraje degree $\geqslant 2^{n-2}$, no K r minor.
By induction on r, assume that all groghs w. av. degree $\geqslant 2^{\text {res }}$ has K_{r-1} minor

$$
\begin{gathered}
\frac{\text { Either }}{N(u)} \cap N(v) \\
2^{n \prime-3} \\
\text { nodes }
\end{gathered}
$$

or G/uv has one fewer nodes and $<2^{\text {on -3 }}$ fewer ed jer, 50 arg degree $\geqslant 2^{r-2}$

So $G[N[v]]$ has min degree $\geqslant 2^{r^{-3}}$, so K_{r-1} minor, M, then
 Mu v is a K_{r} minor.

The (Kostochtea)
There exists $c>0$ sit.
any graph with arg degree $\geqslant \mathrm{c} \sqrt{\log n}$ has a K_{r} minor.

Note: if $\chi(G) \geqslant d$, then G has a subjrapl with minimum degree $\geqslant d$ -

In other words, if 6 has no Kr minor, then $X(G) \leq c+\sqrt{l 0}$ r.

Conj(Hadwiger)
If G ha, no K minor, then

$$
\chi(G) \leq r-1
$$

For monday:
Read Szemeredis regularity 7.4.7.5 tomas. theorem

- Statement
- Proof of Erdós-Shone theorem via $S R \bar{T}$
- Proof of SRT

$\forall \varepsilon \exists m$
you car partition any roph in mporb
s.t
the edjes between parb
"look like a candom bipartike with densitydij" (E-regular pain)

