Hyperbolic geometry

Shapes in Action 2nd Oct 2020

Program schedule for Oct $2^{\text {nd }}$

13:15 Wrap up of Ex this week (Archimedean solids)
\& Frieze pattern analysis
14:00 Break
14:15 Some principles of Hyperbolic geometry Curvature \& classification of surfaces
15:00 Break
15:15 Magic theorem for hyperbolic tilings? What are hyperbolic surfaces?

Archimedean solids and their symmetries

```
*332 (1)
*432 (5+one 432)
*532 (5+one 532)
```


families

*332 symmetry

Tetrahedron (Platonic solid) $1+2 / 6+2 / 6+1 / 4=1+11 / 12=2-2 / 24$, d=24=4x6

*432 symmetry

Cube and octahedron (Platonic solids)

Truncated octahedron

Cuboctahedron

$\mathbf{A}^{3 \prime}$
Aalto University
$1+3 / 8+1 / 3+1 / 4=1+23 / 24=2-1 / 24=2-2 / 48, d=6$ (faces) ${ }^{*} 8=48$ for cube 2102020

More *432 symmetry

Truncated cuboctahedron

- 12 squares
- 8 hexagons
- 6 octagons

Rhombicuboctahedron

(truncated rhombic dodecahedron)

- 8 triangles
- 18 squares

Rhombic dodecahedron (dual of cuboctahedron)

Rhombic dodecacube at Otakaari 1 lobby

by E.Axelsson (SCI); H. Fred (HU, Computer science), H. Judin (ARTS), V. Livio (SCI) , M. Tuomela (ARTS)

Snub cube 432

From Rhombicuboctahedron

- 6 squares
- 32 triangles

Snub cube 432

$$
3 / 4+2 / 3+1 / 2=23 / 12=2-1 / 12=2-2 / 24
$$

- 6 squares
- 32 triangles

*532 Symmetry

Truncated dodecahedron

- 20 triangles
- 12 decegons

Truncated icosahedron

- 12 pentagons
- 20 hexagons (Platonic solids)

12 (faces)* 10=120= 20 (faces)* 6 Dodecahedron and Icosahedron

$$
1+2 / 5+1 / 3+1 / 4=1+59 / 60=2-1 / 60=2-2 / 120
$$

What is the difference between these polyhedra?

- 12 pentagons
- 20 hexagons
- 90 edges, 60 vertices

Icosidodecahedron *532

- 20 triangles
- 12 pentagons

Truncated icosidodecahedron *532

- 30 squares

- 20 hexagons
- 12 decagons

Rhombic triacontahedron

Dual of truncated icosidodecahedron

30 rhombuses

Rhombicosidodecahedron

Truncated rhombic triacontahedron

- 20 triangles
- 30 squares
2.10.2020
- 12 pentagons

Rhombicosidodecahedron design

Snub dodecahedron 532

- 12 pentagons
- 80 triangles

Pseudo rhombicuboctahedron 2*4

$$
1 / 2+1+3 / 8=1+7 / 8=1-1 / 8=2-2 / 16
$$

Compare with the
rhombicuboctahedron *432

Move and turn

By Jouko Koskinen and Jeff Weeks

http://www.geometrygames.org/MoveTurn/index.html.en

Beautiful foldings by Elias Seeve

Stellated icosahedron

Stellated octahedron

Aalto University
Sonobe units

The Magic theorem for Frieze Patterns as a corollary of the spherical case

Step 1: Roll up an infinite frieze around the equator of a (large enough) sphere so that the pattern is repeated N times.
=> Rotational symmetry of order N within seven spherical symmetries *22N, *NN, N*, 2*N, Nx, 22N, NN

Step 2: $\mathrm{N}->\infty,(\mathrm{N}-1) / 2 \mathrm{~N}->1 / 2$ and $(\mathrm{N}-1) / \mathrm{N}->1$
Step 3: Frieze patterns have infinitely many symmetries.
$=>$ Total cost of a frieze pattern is 2 and always contains ∞ s.t. $\operatorname{cost}(\infty)=1 / 2$, $\operatorname{cost}(\infty)=1$

```
*22N, *NN, N*, 2*N, Nx, 22N, NN give
*22\infty,*\infty\infty, 汭, 2* 
```


Euclidean (=flat), spherical and hyperbolic models of 2D geometry

$K=0$ (17 types)

$K>0$ (14)

$K<0(\infty)$

What is curvature?

Curvature of a smooth planar curve at point P is $\boldsymbol{\mu}(\mathrm{P})=1 / \boldsymbol{\rho}$

- works also for curves in space or higher dimensions
- points should be approachable with circles
- extrinsic quantity

Curvature of a (parametrized planar) curve has a sign

What is curvature of a surface?

Gauss curvature

$K(p)=\varkappa_{1}(p) \varkappa_{2}(p)$

Theorema Egregium (Gauss, 1827)

Curvature K is an intrinsic quantity!

 of principal curvaturestangent plane

Warning: Monkey saddle

Zero Gaussian curvature at the origin

What are possible constant Gauss curvature geometries for smooth closed surfaces?

$\mathbf{A}^{3 \text { y }}$ Hatamen

Where did hyperbolic geometry come from ?

Prehistory: Janos Bolyai (1801-1860) N.I. Lobachevsky (1792-1856) independent studies axiomatically (without explicit construction)

Obsession on Euclid's parallel postulate:
Through a point not on a line, there is exactly one line parallel to the given line.
\Rightarrow There exists an 'Imaginary geometry' violating this postulate (late 1820)!

Bernhard Riemann (1826-1866)

Inaugural lecture (Göttingen, 1854): ‘On the Hypotheses which Lie in the Foundation of Geometry'

Description how hyperbolic geometry would be the intrinsic geometry of a surface with constant negative curvature that extend indefinitely in all directions.
=> Is there a surface in 3-space with constant negative curvature ? (*)

Eugenio Beltrami (1835-1900)

Pseudosphere (1866) : A local model via 'lazy dogs curve' (tractrix) rotating around x-axis

Antonio Candido Capelo, Mario
Ferrarí, $\mathfrak{L a}$ "cuffía" di Beltrami: storía e descrizione, Bollettíno
di Storía delle Scienze Matematiche 2 (1982): 233-237.

Aalto University

University of Pavia

Some appearances of the pseudosphere

P. Voigt 1927: Patent for loudspeaker horn design based on tractrix

David Hilbert (1862-1943)

Answer (1901) to the question (*) posed by Riemann:

It is not possible to have an equation describe a surface in 3-space that has constant negative curvature and that is extended indefinitely in all directions.

Improvements by Erik Holmgren (1902),
Marc Amsler (1955)

Nicolaas Kuiper (1920-1994) John ('beautiful mind') Nash (1928-2015)

Any abstract manifold can be seen as a submanifold in some (enough) high dimensional Euclidean space. $(1956,1966)$
\Rightarrow Holds also for hyperbolic surfaces!

D. Blanusa (1955)

The hyperbolic plane can be embedded smoothly and isometrically into the 6-dimensional $\mathcal{E} u c l i d i a n ~ s p a c e . ~$

Bill Thurston and his paper annuli to approximate hyperbolic surfaces

$\rho=$ radius of the hyperbolic plane Curvature-1/ ρ^{2}

What I hear I forget, What I see, I remember, What I touch, I understand.

- Confius (555-479 CE)

Some outcomes from the workshop at the Institute of Figuring (theiff.org)

Daina Taimina

Study crocheted surfaces

- Try to find curves that realize shortest distances between some points ie geodesics
- Try to convince yourself that the parallel axiom does not hold
- can you find the radius of the surface ?

On various ways to map hyperbolic surfaces to Euclidean 3-space

Analogous problem as studying geography of our spherical planet by looking a flat map.

Ex: stereographic projection

Stereographic projection preservers angels !

Pictures by Henry Segerman

Can something similar be done for the hyperbolic plane?

Beltrami-Klein model for the hyperbolic plane $(1868,1871)$
 Disk model, boundary not included
 Advantage: shortest distances between points are straight lines
 Weakness: Does not preserve angles, Circles are not circular in general

Henri Poincaré (1854-1912) models

- Preserve angles (conformal model)
- Circular arcs perpendicular to the boundary realise shortest distances between points

A 5 Aalto University
Isometries = Möbius maps preserving half plane/unit circle !

