
Chapter 8

Learning SBM parameters

8.1 Statistical network inference

Network data usually consists of relational information between a set of nodes ! intro?

that is represented by an n-by-n matrix (Xij) with binary or numerical en-
tries, and node attribute data represented by an n-vector (Zi) with numerical
or categorical entries, see Figure 8.1. Network inference problems concern
computing estimates, making predictions, and testing hypotheses of network
structure and node attributes based on partial or noisy observations of the
network data matrix (Xij), node attribute vectors (Zi), and possibly some
auxiliary data related to temporal dynamics (di↵usions, random walks) on
the network.
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Figure 8.1: Node attributes and relationships.

This framework contains a rich class of applications, for example:

Example 8.1 (Community learning). Estimate node attributes (Zi) based
on fully observed network structure (Xij), up to a permutation of node labels.
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This amounts to estimating a partition of the node set generated by the sets
Vs = {i : Zi = s} called communities.

Example 8.2 (Phylogenetics). Denote by Zi a genetic trait of an individual
or a group of organisms i. If the values of Zi have been observed for a set of
leaf nodes in an evolutionary tree with fully or partially observed structure
(Xij), the task is to infer the value Zi0 of the initial ancestor corresponding
to the root node i0 of the evolutionary tree.

Example 8.3 (Epidemics). Let Zi be a binary variable indicating whether
an individual i falls victim to an infectious disease, and let Xij be a binary
variable indicating whether the disease is transmitted through a direct con-
tact between individuals i and j. An important statistical task is to estimate
the size of the set {i : Zi = 1} of eventually infected individuals, based
on observing values of Zi for a typically small subset of nodes, and partial
observations of the network structure (Xij).

Network data is often given in bipartite form so that we observed rela-
tional information (Xij) in the form of an m-by-n matrix between m nodes
of a particular type having attributes (ZL

i
), and n nodes of a di↵erent type

having attributes (ZR

j
), see Figure 8.2. Practical learning tasks involving

bipartite data are common in crowdsourcing and collaborative filtering con-
texts, see the examples below.
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Figure 8.2: Bipartite network data.

Example 8.4 (Crowdsourcing). In microtasking platforms such as Amazon
Mechanical Turk, a set of m simple tasks are allocated to n workers who
might provide unreliable answers. The unreliability is mitigated by allocating
the same task to several workers. Denote by Xij the outcome of task i
performed by worker j, by ZL

i
the true outcome of task i, and by ZR

j
the

inherent reliability of worker j. The inference problem is to estimate the true
outcomes (ZL

i
) based on observed data (Xij).
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Example 8.5 (Collaborative filtering). In online recommendation systems a
common objective is to infer customer’s preferences based on their own and
other customers’ rankings on a set of items. Let Xij be a number indicating
the level of preference of item i by user j. Having observed a partial set of
entries of (Xij), the challenge is to complete the matrix by estimating the
unobserved remaining values. A famous example of this problem is the Netflix
challenge1. This problem setup does not involve item attributes (ZL

i
) or

customer attributes (ZR

j
), but they could be incorporated as auxiliary model

variables.

For notational simplicity, these lecture notes restrict to the unipartite
network setting corresponding to Figure 8.1. We will model the joint dis-
tribution of the network structure (Xij) and the node attributes (Zi) using
a statistical model where the entries Xij are mutually independent condi-
tionally on the node attributes. This model is described in detail in next
section.

8.2 Learning stochastic block models

Denote by Gn the set of undirected graphs on node set [n] = {1, . . . , n}, or
equivalently, the set of all binary arrays (xij) indexed by 1  i < j  n. A
stochastic block model with n nodes and m blocks generates inhomogeneous
Bernoulli random graphs with link probabilities

pij = Kzizj ,

and the model is parameterized by a symmetric m-by-m matrix K with
nonnegative entries, called the block interaction matrix, and a vector z =
(z1, . . . , zn) with entries in [m] = {1, . . . ,m}, called the block membership
vector. The law of the random graph is a probability distribution on Gn with
probability mass function

f(x | z) =
Y

1i<jn

(1�Kzizj)
1�xijKxij

zizj
. (8.1)

In usual statistical learning tasks, the pairwise node-to-node interactions
x = (xij) are observed and the block memberships z = (zi) are unknown. In a
Bayesian inference approach, a standard approach is to assume that the block
memberships zi are independent random samples from a prior distribution ↵
on [m]. This leads to a doubly stochastic block model where the joint law of

1https://en.wikipedia.org/wiki/Netflix_Prize

84



the block memberships (“parameter”) and the pair interactions (“data”) is
a probability distribution on Gn ⇥ [m]n given by

f(x, z) =
X

z2[m]n

f(x | z)
nY

i=1

↵(zi). (8.2)

Formula (8.2) represents the joint distribution of a random graph (Xij) and a
random vector (Zi) such that the entries of (Zi) are mutually independent and
↵-distributed, and conditionally on (Zi), the entries Xij are independent and
Bernoulli distributed with success probability K(Zi, Zj). When the number
of blocks m is assumed fixed and known, the stochastic block model (8.1) is
parameterized by ✓ = (z,K), and the doubly stochastic block model (8.2) by
✓ = (↵, K).

8.3 Learning the block interaction matrix when

block memberships are known

The easiest learning problem is to estimate the block interaction matrix
K from observed graph sample x = (xij) when the block memberships
z = (zi) are known, or they have been first estimated using some other
method. A maximum likelihood estimate of K is a symmetric nonnegative
m-by-mmatrix K̂ which maximizes the likelihoodK 7! fK(x | z) correspond-
ing to formula (8.1).

Let us first introduce some helpful notation related to the block structure
of the observed graph sample. First, let us represent the attribute vector
(zi) as an n-by-m binary matrix (zij) with entries zis = 1(zi = s) indicating
whether node i belongs to block s. Then the size of block s can be written
as

ns =
nX

i=1

zis,

and the number of links between blocks s and t as

est =

(P
n

i=1

P
n

j=1
xijziszjt, s 6= t,

1

2

P
n

i=1

P
n

j=1
xijziszjs, s = t.

As a consequence, the link density between blocks s and t in the observed
graph can be written as

dst =
est
nst

, (8.3)
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where

nst =

(
nsnt, s 6= t,
1

2
ns(ns � 1), s = t.

Theorem 8.6. The unique maximum likelihood estimate of K is the m-by-
m matrix with entries being the observed block densities K̂st = dst defined by
(8.3).

Proof. Recall that maximizing a function is equivalent to maximizing its
logarithm. We take logarithm of the likelihood to transform the product in
(8.1) into a sum. The log-likelihood can be written as

log fK(x | z) =
X

1i<jn

n
(1� xij) log(1�Kzi,zj) + xij logKzi,zj

o
.

In the above sum there is a lot of redundancy in the sense that the only
possible values of the terms are log(1 �Ks,t) and logKs,t for some 1  s 
t  m. By counting how many times these values occur in the sum, we see
that the log-likelihood can be written as

log fK(x | z) =
X

1stm

n
(Nst � est) log(1�Kst) + est log(Kst)

o

=
X

1stm

Nst

n
(1� dst) log(1�Kst) + dst log(Kst)

o
.

After brief algebraic manipulations, one can also verify that

log fK(x | z) =
X

1stm

Nst

n
�H(Ber(dst))� dKL(Ber(Kst)||Ber(dst))

o
,

where H(f) = �
P

x
f(x) log f(x) denotes the Shannon entropy of proba-

bility distribution f , and dKL(f ||g) =
P

x
f(x) log f(x)

g(x)
the Kullback–Leibler

divergence of f with respect to g. Because dKL(f ||g) � 0 always, with equality
holding if and only if f = g, it follows that the above quantity is maximized
when Ber(Kst) = Ber(dst) for all s and t, that is, when Kst = dst.

8.4 Learning block frequencies and block in-

teraction parameters

We will discuss the article [BCL11]. A large random graph is modeled as
a sequence of doubly stochastic block models SBM(↵, K(n)) on node set [n]
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indexed by n = 1, 2, . . . , where the prior block membership distribution ↵ is
a probability distribution on a set S = [m], and the connectivity matrix is
given by When we

restrict to

the case

m = O(1),

we can

ignore ^

K(n)(s, t) = ⇢nK(s, t) ^ 1, (8.4)

where the link density ⇢n is a scalar such that ⇢n ! 0 as n ! 1, and the BJR07

assume

⇢n = n�1

normalized kernel K : S ⇥ S ! [0,1) is a symmetric function2 normalized
according to3 X

s

X

t

K(s, t)↵(s)↵(t) = 1.

As n ! 1, one can verify (exercise) that any particular node pair is linked
with probability (1 + o(1))⇢n, and the expected degree of any node equals
(1+ o(1))n⇢n. The statistical learning problem is now to determine the prior
block membership distribution ↵ and the normalized block interaction matrix
K from a graph sample X(n) obtained from the SBM(↵, K(n)) distribution.

A moment-based estimation approach for learning the model parameters
is to compute the R-matching (or R-covering) densities defined in (7.4) of
the observed graph sample X(n) for a suitable collection of small graphs
R, and try to match the so-obtained empirical densities to the corresponding
theoretical densities of the model. Because in the sparse setting with ⇢n ! 0,
the empirical and model densities converge to zero, we need to work with
normalized densities. For a graph R on node set [r], the normalized R-
covering density of the model is defined by

Q⇤(R) =
X

z1

· · ·
X

zr

↵(z1) · · ·↵(zr)
Y

ij2E(R)

K(zi, zj),

and the normalized empirical R-covering density of the graph sample X(n) is
defined by ⇢�|E(R)|

n Q̂
X(n)(R) where Q̂

X(n)(R) is defined in (7.5). The following
result provides a su�cient condition for the normalized empirical R-covering
density to be a consistent estimator of Q⇤

↵,K
(R).

Theorem 8.7. Assume that cn�1  ⇢n ⌧ 1, and that Clarify me

X

s

X

t

K(s, t)2r↵(s)↵(t) < 1.

Then for any acyclic graph R with r nodes,

⇢�|E(R)|
n

Q̂X(n)(R)
P�! Q⇤(R).

2In the paper [BCL11] a di↵erent truncation w1(w  1) was used in place of w^1, and
S = (0, 1), but this should not make a di↵erence.

3If S is an uncountable measurable space, then all sums over S involving ↵(u) should
be replaced by integrals involving ↵(du).
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Sketch of proof. Because the distribution of the random graph X = X(n) is
invariant with respect to node relabeling, we may relabel the nodes of R
so that V (R) = [r]. Moreover, P(X � R0) = P(X � R) whenever R0 is
isomorphic to R. Hence the expected R-covering density of X equals

EQ̂X(n)(R) = E
P

R02Gn(R)
1(X(n) � R0)

|Gn(R)| = P(X(n) � R).

Because the the entries Xij are conditionally independent given the node
labeling Z, it follows that

P(X(n) � R |Z = z) =
Y

ij2E(R)

(⇢nK(zi, zj) ^ 1),

and

⇢�|E(R)|
n

P(X(n) � R |Z = z) =
Y

ij2E(R)

(K(zi, zj) ^ ⇢�1

n
) !

Y

ij2E(R)

K(zi, zj).

After multiplying the left side above by ↵(z1) · · ·↵(zr) and summing over
z1, . . . , zr, it follows (by Lebesgue’s monotone convergence if there are in-
finitely many labels) that

⇢�|E(R)|
n

P(X(n) � R) ! Q⇤(R),

and we conclude that

E ⇢�|E(R)|
n

Q̂X(n)(R) ! Q⇤(R).

To finish the proof by Chebyshev’s inequality (i.e. the second moment
method), it su�ces to show that the fact that R is acyclic helps here

Var
⇣
⇢�|E(R)|
n

Q̂X(n)(R)
⌘

! 0.

This is done in [BCL11, Proof of Theorem 1] (see also [Bol01, Sec 4.1]).

Using matching densities instead of covering densities

This is nice to know, but not crucially important. For sparse doubly stochastic
block models, the empirical matching and covering densities behave roughly
similarly. By similar arguments as for the R-covering density, it follows that
the expected R-matching density of X = X(n) equals

EP̂X(R) = P
✓
Xij = Rij for all 1  i < j  r

◆
.
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Observe that the di↵erence between the covering and the matching densities
is bounded by Q̂X(R)� P̂X(R) � 0 and

Q̂X(R)� P̂X(R) =
1

|Gn(R)|
X

R02Gn(R)

1(X � R0)1(Xk` = 1 for some k` /2 E(R0))

=
1

|Gn(R)|
X

R02Gn(R)

Y

ij2E(R0)

Xij1(Xk` = 1 for some k` /2 E(R0))

 1

|Gn(R)|
X

R02Gn(R)

0

@
Y

ij2E(R0)

Xij

1

A

0

@
X

k`/2E(R0)

Xk`

1

A ,

where k` /2 E(R0) refers to the k` 2
�
[r]

2

�
\ E(R0), so that

E|Q̂X(R)� P̂X(R)|  E

0

@
Y

ij2E(R)

Xij

1

A

0

B@
X

k`2([r]2 )\E(R)

Xk`

1

CA

 ⇢|E(R)|+1

n
E

0

@
Y

ij2E(R)

K(Zi, Zj)

1

A

0

B@
X

k`2([r]2 )\E(R)

K(Zk, Z`)

1

CA

 c⇢|E(R)|+1

n

under su�cient moment conditions on w. Hence by Markov’s inequality,

⇢�|E(R)|
n

Q̂X(R)� ⇢�|E(R)|
n

P̂X(R)
P�! 0.

Hence by Theorem 8.7 it follows that also the normalized empirical matching
density converges to Q⇤(R), according to

⇢�|E(R)|
n

P̂X(R)
P�! Q⇤(R).

8.5 Identifiability of the doubly stochastic block

model from covering densities

The prior block membership distribution ↵ can be viewed as a column vector
of m numbers ↵s 2 [0, 1] normalized according to

mX

s=1

↵s = 1. (8.5)
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In a finite label space S = [m] we can ignore the truncation term in the kernel
definition (8.4), and we can write K(n)(s, t) = ⇢nKs,t, where ⇢n 2 (0, 1) is the
overall link density and the limiting kernel K is now a symmetric m-by-m
matrix with entries in Kst 2 [0, 1] normalized by

mX

s=1

mX

t=1

Kst↵s↵t = 1. (8.6)

To learn the model it is then su�cient to determine the m real numbers
↵s and the m(m+1)/2 real numbers Kst, 1  s  t  m. Actually, a bit less
is su�cient. Namely, (8.5) and (8.6) imply that we can omit learning one
entry of ↵ and one entry of K. Therefore, the number of free parameters in
the model equals m(m+ 3)/2� 2.

The limiting normalized R-covering density of a doubly stochastic block
model with label distribution ↵ and kernel K was found to be

Q⇤(R) =
X

z1

· · ·
X

zr

Y

ij2E(R)

Kzi,zj ↵z1 · · ·↵zr .

We have seen that the above model covering densities can be consistently
estimated by the empirical covering densities computed from the observed
graph. After observing a graph sample (Xij) and then estimating the covering
densities for a collection R1, . . . , RM of small graphs, we obtain M equations

X

z1

· · ·
X

zr

Y

ij2E(Rk)

Kzi,zj ↵z1 · · ·↵zr = Q⇤(Rk), k = 1, . . . ,M,

involving the unknown parameters ↵s and Kst. The identifiability problem
then asks: Do the above moment equations admit a unique solution? This
is a problem of algebraic statistics. To get a first feeling about whether or
not the problem is easy to solve, let us compute the theoretical normalized
R-covering density for some simple graphs first.

When R is a single link, we get

Q⇤(link) =
X

s

X

t

Kst ↵s↵t = 1

due to the normalization constraint (8.6). For the triangle we obtain

Q⇤(triangle) =
X

s

X

t

X

u

KstKtuKsu ↵s↵t↵u,

but this appears a complicated formula to analyze. To obtain simpler alge-
braic expressions, we will try computing covering densities for some acyclic
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graphs. For the 3-path with V (R) = {1, 2, 3, 4} and E(R) = {{1, 2}, {2, 3}, {3, 4}},
we find that

Q⇤(3-path) =
X

u1,u2,u3,u4

Ku1u2Ku2u3Ku3u4 ↵u1↵u2↵u3↵u4

=
X

u1,u2,u3,u4

↵u1Lu1u2Lu2u3Lu3u4

=
X

u1

X

u4

↵u1L
3

u1u4

=
X

u

↵u(L
3e)u,

where Luv = Kuv↵v is the matrix product of K and the diagonal matrix with
entries ↵1, . . . ,↵m, and e is the column vectors of m ones. For the 3-star
with V (R) = {1, 2, 3, 4} and E(R) = {{1, 2}, {1, 3}, {1, 4}}, we get

Q⇤(3-star) =
X

u1,u2,u3,u4

Ku1u2Ku1u3Ku1u4 ↵u1↵u2↵u3↵u4

=
X

u1

↵u1

 
X

u2

X

u3

X

u4

Ku1u2Ku1u3Ku1u4↵u2↵u3↵u4

!

=
X

u

↵u

 
X

v

Kuv↵v

!3

=
X

u

↵u ((Le)u)
3 .

The above computations can be generalized to (exercise)

Q⇤(k-path) =
X

u

↵u(L
ke)u,

Q⇤(`-star) =
X

u

↵u ((Le)u)
` .

Even more generally, one can verify (exercise) that

Q⇤(k`-star) =
X

u

↵u(L
ke)`

u
, (8.7)

where a k`-star refers to a graph of radius k obtained by joining the endpoints
of ` paths of length k at a common hub node in the center. Hence an (1, `)-
star is the usual `-star.
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Can we identify ↵ and K from the covering densities of paths and stars?
The first claim is that we can identify (↵1, . . . ,↵m) from the `-star covering
densities with ` = 1, . . . , 2m� 1. Why? Let X1 be a random variable which
takes on value (Le)u with probability ↵u for all u = 1, . . . ,m. Then

EX`

1
=
X

u

↵u ((Le)u)
` = Q⇤(`-star).

Hence the knowledge of normalized `-star covering densities amounts to the
knowledge of the moments EX`

1
for ` = 1, . . . , 2m � 1. Then a classical

theorem about the method of moments [Fel71] tells that the distribution
(support and probabilities) of X1 can be recovered from su�ciently many
moments EX1,EX2

1
, . . . Hence, we may obtain the label distribution ↵ and

the rows sums (Le)1, . . . (Le)m from the star covering densities.
Next, let Xk be a random variable which takes on value (Lke)u with

probability ↵u. Then by (8.7),

EX`

k
=
X

u

↵u(L
ke)`

u
= Q⇤(k`-star),

and hence we may recover the rows sums (Lke)1, . . . , (Lke)m from the k`-star
covering densities. Let us now define the m-by-m square matrices

V (1) =
⇥
e Le · · · Lm�1e

⇤

and
V (2) =

⇥
Le L2e · · · Lme

⇤
.

Then
LV (1) = V (2),

and if the columns of V (1) are linearly independent, we obtain the matrix
L from

L = V (2)(V (1))�1,

and thereafter the matrix K by Kuv = Luv↵�1

v
. Hence we have proved the

following result.

Theorem 8.8. Assume that the vectors e, Le, . . . , Lm�1e are linearly inde-
pendent and ↵u > 0 for all u. Then the label distribution ↵ and the nor-
malized kernel K can be identified from the normalized covering densities
Q⇤(k`-star) with k, ` � 1.

Combining Theorems 8.7 and 8.8 yields a consistent way to estimate the
parameters ↵ and K of a large and sparse doubly stochastic block model
from the normalized empirical covering densities of k`-stars computed from
a single large sample X(n).
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